MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  excom13 Structured version   Unicode version

Theorem excom13 1835
Description: Swap 1st and 3rd existential quantifiers. (Contributed by NM, 9-Mar-1995.)
Assertion
Ref Expression
excom13  |-  ( E. x E. y E. z ph  <->  E. z E. y E. x ph )

Proof of Theorem excom13
StepHypRef Expression
1 excom 1833 . 2  |-  ( E. x E. y E. z ph  <->  E. y E. x E. z ph )
2 excom 1833 . . 3  |-  ( E. x E. z ph  <->  E. z E. x ph )
32exbii 1652 . 2  |-  ( E. y E. x E. z ph  <->  E. y E. z E. x ph )
4 excom 1833 . 2  |-  ( E. y E. z E. x ph  <->  E. z E. y E. x ph )
51, 3, 43bitri 271 1  |-  ( E. x E. y E. z ph  <->  E. z E. y E. x ph )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184   E.wex 1597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-11 1826
This theorem depends on definitions:  df-bi 185  df-ex 1598
This theorem is referenced by:  exrot3  1836  exrot4  1837  euotd  4734  elfuns  29533
  Copyright terms: Public domain W3C validator