Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  exbir Structured version   Unicode version

Theorem exbir 32927
Description: Exportation implication also converting the consequent from a biconditional to an implication. Derived automatically from exbirVD 33361. (Contributed by Alan Sare, 31-Dec-2011.)
Assertion
Ref Expression
exbir  |-  ( ( ( ph  /\  ps )  ->  ( ch  <->  th )
)  ->  ( ph  ->  ( ps  ->  ( th  ->  ch ) ) ) )

Proof of Theorem exbir
StepHypRef Expression
1 bi2 198 . . 3  |-  ( ( ch  <->  th )  ->  ( th  ->  ch ) )
21imim2i 14 . 2  |-  ( ( ( ph  /\  ps )  ->  ( ch  <->  th )
)  ->  ( ( ph  /\  ps )  -> 
( th  ->  ch ) ) )
32expd 436 1  |-  ( ( ( ph  /\  ps )  ->  ( ch  <->  th )
)  ->  ( ph  ->  ( ps  ->  ( th  ->  ch ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator