Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  exatleN Structured version   Unicode version

Theorem exatleN 35541
Description: A condition for an atom to be less than or equal to a lattice element. Part of proof of Lemma A in [Crawley] p. 112. (Contributed by NM, 28-Apr-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
atomle.b  |-  B  =  ( Base `  K
)
atomle.l  |-  .<_  =  ( le `  K )
atomle.j  |-  .\/  =  ( join `  K )
atomle.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
exatleN  |-  ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q
) ) )  -> 
( R  .<_  X  <->  R  =  P ) )

Proof of Theorem exatleN
StepHypRef Expression
1 simpl32 1076 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  =/=  P )  ->  -.  Q  .<_  X )
2 atomle.b . . . . . . 7  |-  B  =  ( Base `  K
)
3 atomle.l . . . . . . 7  |-  .<_  =  ( le `  K )
4 simp11l 1105 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  =/=  P  /\  R  .<_  X )  ->  K  e.  HL )
5 hllat 35501 . . . . . . . 8  |-  ( K  e.  HL  ->  K  e.  Lat )
64, 5syl 16 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  =/=  P  /\  R  .<_  X )  ->  K  e.  Lat )
7 simp122 1127 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  =/=  P  /\  R  .<_  X )  ->  Q  e.  A )
8 atomle.a . . . . . . . . 9  |-  A  =  ( Atoms `  K )
92, 8atbase 35427 . . . . . . . 8  |-  ( Q  e.  A  ->  Q  e.  B )
107, 9syl 16 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  =/=  P  /\  R  .<_  X )  ->  Q  e.  B )
11 simp121 1126 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  =/=  P  /\  R  .<_  X )  ->  P  e.  A )
122, 8atbase 35427 . . . . . . . . 9  |-  ( P  e.  A  ->  P  e.  B )
1311, 12syl 16 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  =/=  P  /\  R  .<_  X )  ->  P  e.  B )
14 simp123 1128 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  =/=  P  /\  R  .<_  X )  ->  R  e.  A )
152, 8atbase 35427 . . . . . . . . 9  |-  ( R  e.  A  ->  R  e.  B )
1614, 15syl 16 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  =/=  P  /\  R  .<_  X )  ->  R  e.  B )
17 atomle.j . . . . . . . . 9  |-  .\/  =  ( join `  K )
182, 17latjcl 15798 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  P  e.  B  /\  R  e.  B )  ->  ( P  .\/  R
)  e.  B )
196, 13, 16, 18syl3anc 1226 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  =/=  P  /\  R  .<_  X )  ->  ( P  .\/  R )  e.  B )
20 simp11r 1106 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  =/=  P  /\  R  .<_  X )  ->  X  e.  B )
2114, 7, 113jca 1174 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  =/=  P  /\  R  .<_  X )  ->  ( R  e.  A  /\  Q  e.  A  /\  P  e.  A )
)
22 simp2 995 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  =/=  P  /\  R  .<_  X )  ->  R  =/=  P )
234, 21, 223jca 1174 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  =/=  P  /\  R  .<_  X )  ->  ( K  e.  HL  /\  ( R  e.  A  /\  Q  e.  A  /\  P  e.  A )  /\  R  =/=  P
) )
24 simp133 1131 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  =/=  P  /\  R  .<_  X )  ->  R  .<_  ( P  .\/  Q
) )
253, 17, 8hlatexch1 35532 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  Q  e.  A  /\  P  e.  A
)  /\  R  =/=  P )  ->  ( R  .<_  ( P  .\/  Q
)  ->  Q  .<_  ( P  .\/  R ) ) )
2623, 24, 25sylc 60 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  =/=  P  /\  R  .<_  X )  ->  Q  .<_  ( P  .\/  R
) )
27 simp131 1129 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  =/=  P  /\  R  .<_  X )  ->  P  .<_  X )
28 simp3 996 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  =/=  P  /\  R  .<_  X )  ->  R  .<_  X )
292, 3, 17latjle12 15809 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  ( P  e.  B  /\  R  e.  B  /\  X  e.  B
) )  ->  (
( P  .<_  X  /\  R  .<_  X )  <->  ( P  .\/  R )  .<_  X ) )
306, 13, 16, 20, 29syl13anc 1228 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  =/=  P  /\  R  .<_  X )  ->  (
( P  .<_  X  /\  R  .<_  X )  <->  ( P  .\/  R )  .<_  X ) )
3127, 28, 30mpbi2and 919 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  =/=  P  /\  R  .<_  X )  ->  ( P  .\/  R )  .<_  X )
322, 3, 6, 10, 19, 20, 26, 31lattrd 15805 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  =/=  P  /\  R  .<_  X )  ->  Q  .<_  X )
33323expia 1196 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  =/=  P )  -> 
( R  .<_  X  ->  Q  .<_  X ) )
341, 33mtod 177 . . . 4  |-  ( ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  =/=  P )  ->  -.  R  .<_  X )
3534ex 432 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q
) ) )  -> 
( R  =/=  P  ->  -.  R  .<_  X ) )
3635necon4ad 2602 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q
) ) )  -> 
( R  .<_  X  ->  R  =  P )
)
37 simp31 1030 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q
) ) )  ->  P  .<_  X )
38 breq1 4370 . . 3  |-  ( R  =  P  ->  ( R  .<_  X  <->  P  .<_  X ) )
3937, 38syl5ibrcom 222 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q
) ) )  -> 
( R  =  P  ->  R  .<_  X ) )
4036, 39impbid 191 1  |-  ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q
) ) )  -> 
( R  .<_  X  <->  R  =  P ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 971    = wceq 1399    e. wcel 1826    =/= wne 2577   class class class wbr 4367   ` cfv 5496  (class class class)co 6196   Basecbs 14634   lecple 14709   joincjn 15690   Latclat 15792   Atomscatm 35401   HLchlt 35488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-8 1828  ax-9 1830  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360  ax-rep 4478  ax-sep 4488  ax-nul 4496  ax-pow 4543  ax-pr 4601  ax-un 6491
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1402  df-ex 1621  df-nf 1625  df-sb 1748  df-eu 2222  df-mo 2223  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-ne 2579  df-ral 2737  df-rex 2738  df-reu 2739  df-rab 2741  df-v 3036  df-sbc 3253  df-csb 3349  df-dif 3392  df-un 3394  df-in 3396  df-ss 3403  df-nul 3712  df-if 3858  df-pw 3929  df-sn 3945  df-pr 3947  df-op 3951  df-uni 4164  df-iun 4245  df-br 4368  df-opab 4426  df-mpt 4427  df-id 4709  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5460  df-fun 5498  df-fn 5499  df-f 5500  df-f1 5501  df-fo 5502  df-f1o 5503  df-fv 5504  df-riota 6158  df-ov 6199  df-oprab 6200  df-preset 15674  df-poset 15692  df-plt 15705  df-lub 15721  df-glb 15722  df-join 15723  df-meet 15724  df-p0 15786  df-lat 15793  df-covers 35404  df-ats 35405  df-atl 35436  df-cvlat 35460  df-hlat 35489
This theorem is referenced by:  cdlema2N  35929
  Copyright terms: Public domain W3C validator