Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  exatleN Structured version   Visualization version   Unicode version

Theorem exatleN 33014
Description: A condition for an atom to be less than or equal to a lattice element. Part of proof of Lemma A in [Crawley] p. 112. (Contributed by NM, 28-Apr-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
atomle.b  |-  B  =  ( Base `  K
)
atomle.l  |-  .<_  =  ( le `  K )
atomle.j  |-  .\/  =  ( join `  K )
atomle.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
exatleN  |-  ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q
) ) )  -> 
( R  .<_  X  <->  R  =  P ) )

Proof of Theorem exatleN
StepHypRef Expression
1 simpl32 1096 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  =/=  P )  ->  -.  Q  .<_  X )
2 atomle.b . . . . . . 7  |-  B  =  ( Base `  K
)
3 atomle.l . . . . . . 7  |-  .<_  =  ( le `  K )
4 simp11l 1125 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  =/=  P  /\  R  .<_  X )  ->  K  e.  HL )
5 hllat 32974 . . . . . . . 8  |-  ( K  e.  HL  ->  K  e.  Lat )
64, 5syl 17 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  =/=  P  /\  R  .<_  X )  ->  K  e.  Lat )
7 simp122 1147 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  =/=  P  /\  R  .<_  X )  ->  Q  e.  A )
8 atomle.a . . . . . . . . 9  |-  A  =  ( Atoms `  K )
92, 8atbase 32900 . . . . . . . 8  |-  ( Q  e.  A  ->  Q  e.  B )
107, 9syl 17 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  =/=  P  /\  R  .<_  X )  ->  Q  e.  B )
11 simp121 1146 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  =/=  P  /\  R  .<_  X )  ->  P  e.  A )
122, 8atbase 32900 . . . . . . . . 9  |-  ( P  e.  A  ->  P  e.  B )
1311, 12syl 17 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  =/=  P  /\  R  .<_  X )  ->  P  e.  B )
14 simp123 1148 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  =/=  P  /\  R  .<_  X )  ->  R  e.  A )
152, 8atbase 32900 . . . . . . . . 9  |-  ( R  e.  A  ->  R  e.  B )
1614, 15syl 17 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  =/=  P  /\  R  .<_  X )  ->  R  e.  B )
17 atomle.j . . . . . . . . 9  |-  .\/  =  ( join `  K )
182, 17latjcl 16346 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  P  e.  B  /\  R  e.  B )  ->  ( P  .\/  R
)  e.  B )
196, 13, 16, 18syl3anc 1276 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  =/=  P  /\  R  .<_  X )  ->  ( P  .\/  R )  e.  B )
20 simp11r 1126 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  =/=  P  /\  R  .<_  X )  ->  X  e.  B )
2114, 7, 113jca 1194 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  =/=  P  /\  R  .<_  X )  ->  ( R  e.  A  /\  Q  e.  A  /\  P  e.  A )
)
22 simp2 1015 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  =/=  P  /\  R  .<_  X )  ->  R  =/=  P )
234, 21, 223jca 1194 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  =/=  P  /\  R  .<_  X )  ->  ( K  e.  HL  /\  ( R  e.  A  /\  Q  e.  A  /\  P  e.  A )  /\  R  =/=  P
) )
24 simp133 1151 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  =/=  P  /\  R  .<_  X )  ->  R  .<_  ( P  .\/  Q
) )
253, 17, 8hlatexch1 33005 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  Q  e.  A  /\  P  e.  A
)  /\  R  =/=  P )  ->  ( R  .<_  ( P  .\/  Q
)  ->  Q  .<_  ( P  .\/  R ) ) )
2623, 24, 25sylc 62 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  =/=  P  /\  R  .<_  X )  ->  Q  .<_  ( P  .\/  R
) )
27 simp131 1149 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  =/=  P  /\  R  .<_  X )  ->  P  .<_  X )
28 simp3 1016 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  =/=  P  /\  R  .<_  X )  ->  R  .<_  X )
292, 3, 17latjle12 16357 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  ( P  e.  B  /\  R  e.  B  /\  X  e.  B
) )  ->  (
( P  .<_  X  /\  R  .<_  X )  <->  ( P  .\/  R )  .<_  X ) )
306, 13, 16, 20, 29syl13anc 1278 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  =/=  P  /\  R  .<_  X )  ->  (
( P  .<_  X  /\  R  .<_  X )  <->  ( P  .\/  R )  .<_  X ) )
3127, 28, 30mpbi2and 937 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  =/=  P  /\  R  .<_  X )  ->  ( P  .\/  R )  .<_  X )
322, 3, 6, 10, 19, 20, 26, 31lattrd 16353 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  =/=  P  /\  R  .<_  X )  ->  Q  .<_  X )
33323expia 1217 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  =/=  P )  -> 
( R  .<_  X  ->  Q  .<_  X ) )
341, 33mtod 182 . . . 4  |-  ( ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  =/=  P )  ->  -.  R  .<_  X )
3534ex 440 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q
) ) )  -> 
( R  =/=  P  ->  -.  R  .<_  X ) )
3635necon4ad 2655 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q
) ) )  -> 
( R  .<_  X  ->  R  =  P )
)
37 simp31 1050 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q
) ) )  ->  P  .<_  X )
38 breq1 4419 . . 3  |-  ( R  =  P  ->  ( R  .<_  X  <->  P  .<_  X ) )
3937, 38syl5ibrcom 230 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q
) ) )  -> 
( R  =  P  ->  R  .<_  X ) )
4036, 39impbid 195 1  |-  ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q
) ) )  -> 
( R  .<_  X  <->  R  =  P ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    /\ wa 375    /\ w3a 991    = wceq 1455    e. wcel 1898    =/= wne 2633   class class class wbr 4416   ` cfv 5601  (class class class)co 6315   Basecbs 15170   lecple 15246   joincjn 16238   Latclat 16340   Atomscatm 32874   HLchlt 32961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1680  ax-4 1693  ax-5 1769  ax-6 1816  ax-7 1862  ax-8 1900  ax-9 1907  ax-10 1926  ax-11 1931  ax-12 1944  ax-13 2102  ax-ext 2442  ax-rep 4529  ax-sep 4539  ax-nul 4548  ax-pow 4595  ax-pr 4653  ax-un 6610
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3an 993  df-tru 1458  df-ex 1675  df-nf 1679  df-sb 1809  df-eu 2314  df-mo 2315  df-clab 2449  df-cleq 2455  df-clel 2458  df-nfc 2592  df-ne 2635  df-ral 2754  df-rex 2755  df-reu 2756  df-rab 2758  df-v 3059  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-nul 3744  df-if 3894  df-pw 3965  df-sn 3981  df-pr 3983  df-op 3987  df-uni 4213  df-iun 4294  df-br 4417  df-opab 4476  df-mpt 4477  df-id 4768  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6277  df-ov 6318  df-oprab 6319  df-preset 16222  df-poset 16240  df-plt 16253  df-lub 16269  df-glb 16270  df-join 16271  df-meet 16272  df-p0 16334  df-lat 16341  df-covers 32877  df-ats 32878  df-atl 32909  df-cvlat 32933  df-hlat 32962
This theorem is referenced by:  cdlema2N  33402
  Copyright terms: Public domain W3C validator