MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-un Structured version   Visualization version   Unicode version

Theorem ex-un 25874
Description: Example for df-un 3409. Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015.)
Assertion
Ref Expression
ex-un  |-  ( { 1 ,  3 }  u.  { 1 ,  8 } )  =  { 1 ,  3 ,  8 }

Proof of Theorem ex-un
StepHypRef Expression
1 unass 3591 . . 3  |-  ( ( { 1 ,  3 }  u.  { 1 } )  u.  {
8 } )  =  ( { 1 ,  3 }  u.  ( { 1 }  u.  { 8 } ) )
2 snsspr1 4121 . . . . 5  |-  { 1 }  C_  { 1 ,  3 }
3 ssequn2 3607 . . . . 5  |-  ( { 1 }  C_  { 1 ,  3 }  <->  ( {
1 ,  3 }  u.  { 1 } )  =  { 1 ,  3 } )
42, 3mpbi 212 . . . 4  |-  ( { 1 ,  3 }  u.  { 1 } )  =  { 1 ,  3 }
54uneq1i 3584 . . 3  |-  ( ( { 1 ,  3 }  u.  { 1 } )  u.  {
8 } )  =  ( { 1 ,  3 }  u.  {
8 } )
61, 5eqtr3i 2475 . 2  |-  ( { 1 ,  3 }  u.  ( { 1 }  u.  { 8 } ) )  =  ( { 1 ,  3 }  u.  {
8 } )
7 df-pr 3971 . . 3  |-  { 1 ,  8 }  =  ( { 1 }  u.  { 8 } )
87uneq2i 3585 . 2  |-  ( { 1 ,  3 }  u.  { 1 ,  8 } )  =  ( { 1 ,  3 }  u.  ( { 1 }  u.  { 8 } ) )
9 df-tp 3973 . 2  |-  { 1 ,  3 ,  8 }  =  ( { 1 ,  3 }  u.  { 8 } )
106, 8, 93eqtr4i 2483 1  |-  ( { 1 ,  3 }  u.  { 1 ,  8 } )  =  { 1 ,  3 ,  8 }
Colors of variables: wff setvar class
Syntax hints:    = wceq 1444    u. cun 3402    C_ wss 3404   {csn 3968   {cpr 3970   {ctp 3972   1c1 9540   3c3 10660   8c8 10665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-v 3047  df-un 3409  df-in 3411  df-ss 3418  df-pr 3971  df-tp 3973
This theorem is referenced by:  ex-uni  25876
  Copyright terms: Public domain W3C validator