MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-pw Structured version   Visualization version   Unicode version

Theorem ex-pw 25958
Description: Example for df-pw 3944. Example by David A. Wheeler. (Contributed by Mario Carneiro, 2-Jul-2016.)
Assertion
Ref Expression
ex-pw  |-  ( A  =  { 3 ,  5 ,  7 }  ->  ~P A  =  ( ( { (/) }  u.  { { 3 } ,  { 5 } ,  { 7 } } )  u.  ( { { 3 ,  5 } ,  { 3 ,  7 } ,  { 5 ,  7 } }  u.  { { 3 ,  5 ,  7 } } ) ) )

Proof of Theorem ex-pw
StepHypRef Expression
1 pweq 3945 . 2  |-  ( A  =  { 3 ,  5 ,  7 }  ->  ~P A  =  ~P { 3 ,  5 ,  7 } )
2 qdass 4062 . . . 4  |-  ( {
(/) ,  { 3 } }  u.  { {
5 } ,  {
3 ,  5 } } )  =  ( { (/) ,  { 3 } ,  { 5 } }  u.  { { 3 ,  5 } } )
3 qdassr 4063 . . . 4  |-  ( { { 7 } ,  { 3 ,  7 } }  u.  { { 5 ,  7 } ,  { 3 ,  5 ,  7 } } )  =  ( { { 7 } }  u.  { { 3 ,  7 } ,  { 5 ,  7 } ,  { 3 ,  5 ,  7 } }
)
42, 3uneq12i 3577 . . 3  |-  ( ( { (/) ,  { 3 } }  u.  { { 5 } ,  { 3 ,  5 } } )  u.  ( { { 7 } ,  { 3 ,  7 } }  u.  { { 5 ,  7 } ,  {
3 ,  5 ,  7 } } ) )  =  ( ( { (/) ,  { 3 } ,  { 5 } }  u.  { { 3 ,  5 } } )  u.  ( { { 7 } }  u.  { { 3 ,  7 } ,  { 5 ,  7 } ,  { 3 ,  5 ,  7 } }
) )
5 pwtp 4187 . . 3  |-  ~P {
3 ,  5 ,  7 }  =  ( ( { (/) ,  {
3 } }  u.  { { 5 } ,  { 3 ,  5 } } )  u.  ( { { 7 } ,  { 3 ,  7 } }  u.  { { 5 ,  7 } ,  {
3 ,  5 ,  7 } } ) )
6 df-tp 3964 . . . . . . . 8  |-  { {
3 } ,  {
5 } ,  {
7 } }  =  ( { { 3 } ,  { 5 } }  u.  { {
7 } } )
76uneq2i 3576 . . . . . . 7  |-  ( {
(/) }  u.  { {
3 } ,  {
5 } ,  {
7 } } )  =  ( { (/) }  u.  ( { {
3 } ,  {
5 } }  u.  { { 7 } }
) )
8 unass 3582 . . . . . . 7  |-  ( ( { (/) }  u.  { { 3 } ,  { 5 } }
)  u.  { {
7 } } )  =  ( { (/) }  u.  ( { {
3 } ,  {
5 } }  u.  { { 7 } }
) )
97, 8eqtr4i 2496 . . . . . 6  |-  ( {
(/) }  u.  { {
3 } ,  {
5 } ,  {
7 } } )  =  ( ( {
(/) }  u.  { {
3 } ,  {
5 } } )  u.  { { 7 } } )
10 tpass 4061 . . . . . . 7  |-  { (/) ,  { 3 } ,  { 5 } }  =  ( { (/) }  u.  { { 3 } ,  { 5 } } )
1110uneq1i 3575 . . . . . 6  |-  ( {
(/) ,  { 3 } ,  { 5 } }  u.  { {
7 } } )  =  ( ( {
(/) }  u.  { {
3 } ,  {
5 } } )  u.  { { 7 } } )
129, 11eqtr4i 2496 . . . . 5  |-  ( {
(/) }  u.  { {
3 } ,  {
5 } ,  {
7 } } )  =  ( { (/) ,  { 3 } ,  { 5 } }  u.  { { 7 } } )
13 unass 3582 . . . . . 6  |-  ( ( { { 3 ,  5 } }  u.  { { 3 ,  7 } ,  { 5 ,  7 } }
)  u.  { {
3 ,  5 ,  7 } } )  =  ( { {
3 ,  5 } }  u.  ( { { 3 ,  7 } ,  { 5 ,  7 } }  u.  { { 3 ,  5 ,  7 } } ) )
14 tpass 4061 . . . . . . 7  |-  { {
3 ,  5 } ,  { 3 ,  7 } ,  {
5 ,  7 } }  =  ( { { 3 ,  5 } }  u.  { { 3 ,  7 } ,  { 5 ,  7 } }
)
1514uneq1i 3575 . . . . . 6  |-  ( { { 3 ,  5 } ,  { 3 ,  7 } ,  { 5 ,  7 } }  u.  { { 3 ,  5 ,  7 } }
)  =  ( ( { { 3 ,  5 } }  u.  { { 3 ,  7 } ,  { 5 ,  7 } }
)  u.  { {
3 ,  5 ,  7 } } )
16 df-tp 3964 . . . . . . 7  |-  { {
3 ,  7 } ,  { 5 ,  7 } ,  {
3 ,  5 ,  7 } }  =  ( { { 3 ,  7 } ,  {
5 ,  7 } }  u.  { {
3 ,  5 ,  7 } } )
1716uneq2i 3576 . . . . . 6  |-  ( { { 3 ,  5 } }  u.  { { 3 ,  7 } ,  { 5 ,  7 } ,  { 3 ,  5 ,  7 } }
)  =  ( { { 3 ,  5 } }  u.  ( { { 3 ,  7 } ,  { 5 ,  7 } }  u.  { { 3 ,  5 ,  7 } } ) )
1813, 15, 173eqtr4i 2503 . . . . 5  |-  ( { { 3 ,  5 } ,  { 3 ,  7 } ,  { 5 ,  7 } }  u.  { { 3 ,  5 ,  7 } }
)  =  ( { { 3 ,  5 } }  u.  { { 3 ,  7 } ,  { 5 ,  7 } ,  { 3 ,  5 ,  7 } }
)
1912, 18uneq12i 3577 . . . 4  |-  ( ( { (/) }  u.  { { 3 } ,  { 5 } ,  { 7 } }
)  u.  ( { { 3 ,  5 } ,  { 3 ,  7 } ,  { 5 ,  7 } }  u.  { { 3 ,  5 ,  7 } }
) )  =  ( ( { (/) ,  {
3 } ,  {
5 } }  u.  { { 7 } }
)  u.  ( { { 3 ,  5 } }  u.  { { 3 ,  7 } ,  { 5 ,  7 } ,  { 3 ,  5 ,  7 } }
) )
20 un4 3585 . . . 4  |-  ( ( { (/) ,  { 3 } ,  { 5 } }  u.  { { 3 ,  5 } } )  u.  ( { { 7 } }  u.  { { 3 ,  7 } ,  { 5 ,  7 } ,  { 3 ,  5 ,  7 } }
) )  =  ( ( { (/) ,  {
3 } ,  {
5 } }  u.  { { 7 } }
)  u.  ( { { 3 ,  5 } }  u.  { { 3 ,  7 } ,  { 5 ,  7 } ,  { 3 ,  5 ,  7 } }
) )
2119, 20eqtr4i 2496 . . 3  |-  ( ( { (/) }  u.  { { 3 } ,  { 5 } ,  { 7 } }
)  u.  ( { { 3 ,  5 } ,  { 3 ,  7 } ,  { 5 ,  7 } }  u.  { { 3 ,  5 ,  7 } }
) )  =  ( ( { (/) ,  {
3 } ,  {
5 } }  u.  { { 3 ,  5 } } )  u.  ( { { 7 } }  u.  { { 3 ,  7 } ,  { 5 ,  7 } ,  { 3 ,  5 ,  7 } }
) )
224, 5, 213eqtr4i 2503 . 2  |-  ~P {
3 ,  5 ,  7 }  =  ( ( { (/) }  u.  { { 3 } ,  { 5 } ,  { 7 } }
)  u.  ( { { 3 ,  5 } ,  { 3 ,  7 } ,  { 5 ,  7 } }  u.  { { 3 ,  5 ,  7 } }
) )
231, 22syl6eq 2521 1  |-  ( A  =  { 3 ,  5 ,  7 }  ->  ~P A  =  ( ( { (/) }  u.  { { 3 } ,  { 5 } ,  { 7 } } )  u.  ( { { 3 ,  5 } ,  { 3 ,  7 } ,  { 5 ,  7 } }  u.  { { 3 ,  5 ,  7 } } ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1452    u. cun 3388   (/)c0 3722   ~Pcpw 3942   {csn 3959   {cpr 3961   {ctp 3963   3c3 10682   5c5 10684   7c7 10686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ral 2761  df-v 3033  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-nul 3723  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator