MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-pw Structured version   Unicode version

Theorem ex-pw 25355
Description: Example for df-pw 4001. Example by David A. Wheeler. (Contributed by Mario Carneiro, 2-Jul-2016.)
Assertion
Ref Expression
ex-pw  |-  ( A  =  { 3 ,  5 ,  7 }  ->  ~P A  =  ( ( { (/) }  u.  { { 3 } ,  { 5 } ,  { 7 } } )  u.  ( { { 3 ,  5 } ,  { 3 ,  7 } ,  { 5 ,  7 } }  u.  { { 3 ,  5 ,  7 } } ) ) )

Proof of Theorem ex-pw
StepHypRef Expression
1 pweq 4002 . 2  |-  ( A  =  { 3 ,  5 ,  7 }  ->  ~P A  =  ~P { 3 ,  5 ,  7 } )
2 qdass 4115 . . . 4  |-  ( {
(/) ,  { 3 } }  u.  { {
5 } ,  {
3 ,  5 } } )  =  ( { (/) ,  { 3 } ,  { 5 } }  u.  { { 3 ,  5 } } )
3 qdassr 4116 . . . 4  |-  ( { { 7 } ,  { 3 ,  7 } }  u.  { { 5 ,  7 } ,  { 3 ,  5 ,  7 } } )  =  ( { { 7 } }  u.  { { 3 ,  7 } ,  { 5 ,  7 } ,  { 3 ,  5 ,  7 } }
)
42, 3uneq12i 3642 . . 3  |-  ( ( { (/) ,  { 3 } }  u.  { { 5 } ,  { 3 ,  5 } } )  u.  ( { { 7 } ,  { 3 ,  7 } }  u.  { { 5 ,  7 } ,  {
3 ,  5 ,  7 } } ) )  =  ( ( { (/) ,  { 3 } ,  { 5 } }  u.  { { 3 ,  5 } } )  u.  ( { { 7 } }  u.  { { 3 ,  7 } ,  { 5 ,  7 } ,  { 3 ,  5 ,  7 } }
) )
5 pwtp 4232 . . 3  |-  ~P {
3 ,  5 ,  7 }  =  ( ( { (/) ,  {
3 } }  u.  { { 5 } ,  { 3 ,  5 } } )  u.  ( { { 7 } ,  { 3 ,  7 } }  u.  { { 5 ,  7 } ,  {
3 ,  5 ,  7 } } ) )
6 df-tp 4021 . . . . . . . 8  |-  { {
3 } ,  {
5 } ,  {
7 } }  =  ( { { 3 } ,  { 5 } }  u.  { {
7 } } )
76uneq2i 3641 . . . . . . 7  |-  ( {
(/) }  u.  { {
3 } ,  {
5 } ,  {
7 } } )  =  ( { (/) }  u.  ( { {
3 } ,  {
5 } }  u.  { { 7 } }
) )
8 unass 3647 . . . . . . 7  |-  ( ( { (/) }  u.  { { 3 } ,  { 5 } }
)  u.  { {
7 } } )  =  ( { (/) }  u.  ( { {
3 } ,  {
5 } }  u.  { { 7 } }
) )
97, 8eqtr4i 2486 . . . . . 6  |-  ( {
(/) }  u.  { {
3 } ,  {
5 } ,  {
7 } } )  =  ( ( {
(/) }  u.  { {
3 } ,  {
5 } } )  u.  { { 7 } } )
10 tpass 4114 . . . . . . 7  |-  { (/) ,  { 3 } ,  { 5 } }  =  ( { (/) }  u.  { { 3 } ,  { 5 } } )
1110uneq1i 3640 . . . . . 6  |-  ( {
(/) ,  { 3 } ,  { 5 } }  u.  { {
7 } } )  =  ( ( {
(/) }  u.  { {
3 } ,  {
5 } } )  u.  { { 7 } } )
129, 11eqtr4i 2486 . . . . 5  |-  ( {
(/) }  u.  { {
3 } ,  {
5 } ,  {
7 } } )  =  ( { (/) ,  { 3 } ,  { 5 } }  u.  { { 7 } } )
13 unass 3647 . . . . . 6  |-  ( ( { { 3 ,  5 } }  u.  { { 3 ,  7 } ,  { 5 ,  7 } }
)  u.  { {
3 ,  5 ,  7 } } )  =  ( { {
3 ,  5 } }  u.  ( { { 3 ,  7 } ,  { 5 ,  7 } }  u.  { { 3 ,  5 ,  7 } } ) )
14 tpass 4114 . . . . . . 7  |-  { {
3 ,  5 } ,  { 3 ,  7 } ,  {
5 ,  7 } }  =  ( { { 3 ,  5 } }  u.  { { 3 ,  7 } ,  { 5 ,  7 } }
)
1514uneq1i 3640 . . . . . 6  |-  ( { { 3 ,  5 } ,  { 3 ,  7 } ,  { 5 ,  7 } }  u.  { { 3 ,  5 ,  7 } }
)  =  ( ( { { 3 ,  5 } }  u.  { { 3 ,  7 } ,  { 5 ,  7 } }
)  u.  { {
3 ,  5 ,  7 } } )
16 df-tp 4021 . . . . . . 7  |-  { {
3 ,  7 } ,  { 5 ,  7 } ,  {
3 ,  5 ,  7 } }  =  ( { { 3 ,  7 } ,  {
5 ,  7 } }  u.  { {
3 ,  5 ,  7 } } )
1716uneq2i 3641 . . . . . 6  |-  ( { { 3 ,  5 } }  u.  { { 3 ,  7 } ,  { 5 ,  7 } ,  { 3 ,  5 ,  7 } }
)  =  ( { { 3 ,  5 } }  u.  ( { { 3 ,  7 } ,  { 5 ,  7 } }  u.  { { 3 ,  5 ,  7 } } ) )
1813, 15, 173eqtr4i 2493 . . . . 5  |-  ( { { 3 ,  5 } ,  { 3 ,  7 } ,  { 5 ,  7 } }  u.  { { 3 ,  5 ,  7 } }
)  =  ( { { 3 ,  5 } }  u.  { { 3 ,  7 } ,  { 5 ,  7 } ,  { 3 ,  5 ,  7 } }
)
1912, 18uneq12i 3642 . . . 4  |-  ( ( { (/) }  u.  { { 3 } ,  { 5 } ,  { 7 } }
)  u.  ( { { 3 ,  5 } ,  { 3 ,  7 } ,  { 5 ,  7 } }  u.  { { 3 ,  5 ,  7 } }
) )  =  ( ( { (/) ,  {
3 } ,  {
5 } }  u.  { { 7 } }
)  u.  ( { { 3 ,  5 } }  u.  { { 3 ,  7 } ,  { 5 ,  7 } ,  { 3 ,  5 ,  7 } }
) )
20 un4 3650 . . . 4  |-  ( ( { (/) ,  { 3 } ,  { 5 } }  u.  { { 3 ,  5 } } )  u.  ( { { 7 } }  u.  { { 3 ,  7 } ,  { 5 ,  7 } ,  { 3 ,  5 ,  7 } }
) )  =  ( ( { (/) ,  {
3 } ,  {
5 } }  u.  { { 7 } }
)  u.  ( { { 3 ,  5 } }  u.  { { 3 ,  7 } ,  { 5 ,  7 } ,  { 3 ,  5 ,  7 } }
) )
2119, 20eqtr4i 2486 . . 3  |-  ( ( { (/) }  u.  { { 3 } ,  { 5 } ,  { 7 } }
)  u.  ( { { 3 ,  5 } ,  { 3 ,  7 } ,  { 5 ,  7 } }  u.  { { 3 ,  5 ,  7 } }
) )  =  ( ( { (/) ,  {
3 } ,  {
5 } }  u.  { { 3 ,  5 } } )  u.  ( { { 7 } }  u.  { { 3 ,  7 } ,  { 5 ,  7 } ,  { 3 ,  5 ,  7 } }
) )
224, 5, 213eqtr4i 2493 . 2  |-  ~P {
3 ,  5 ,  7 }  =  ( ( { (/) }  u.  { { 3 } ,  { 5 } ,  { 7 } }
)  u.  ( { { 3 ,  5 } ,  { 3 ,  7 } ,  { 5 ,  7 } }  u.  { { 3 ,  5 ,  7 } }
) )
231, 22syl6eq 2511 1  |-  ( A  =  { 3 ,  5 ,  7 }  ->  ~P A  =  ( ( { (/) }  u.  { { 3 } ,  { 5 } ,  { 7 } } )  u.  ( { { 3 ,  5 } ,  { 3 ,  7 } ,  { 5 ,  7 } }  u.  { { 3 ,  5 ,  7 } } ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1398    u. cun 3459   (/)c0 3783   ~Pcpw 3999   {csn 4016   {cpr 4018   {ctp 4020   3c3 10582   5c5 10584   7c7 10586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ral 2809  df-v 3108  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator