MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-or Structured version   Unicode version

Theorem ex-or 25347
Description: Example for df-or 368. Example by David A. Wheeler. (Contributed by Mario Carneiro, 9-May-2015.)
Assertion
Ref Expression
ex-or  |-  ( 2  =  3  \/  4  =  4 )

Proof of Theorem ex-or
StepHypRef Expression
1 eqid 2454 . 2  |-  4  =  4
21olci 389 1  |-  ( 2  =  3  \/  4  =  4 )
Colors of variables: wff setvar class
Syntax hints:    \/ wo 366    = wceq 1398   2c2 10581   3c3 10582   4c4 10583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-ext 2432
This theorem depends on definitions:  df-bi 185  df-or 368  df-cleq 2446
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator