MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evthicc2 Structured version   Unicode version

Theorem evthicc2 20924
Description: Combine ivthicc 20922 with evthicc 20923 to exactly describe the image of a closed interval. (Contributed by Mario Carneiro, 19-Feb-2015.)
Hypotheses
Ref Expression
evthicc.1  |-  ( ph  ->  A  e.  RR )
evthicc.2  |-  ( ph  ->  B  e.  RR )
evthicc.3  |-  ( ph  ->  A  <_  B )
evthicc.4  |-  ( ph  ->  F  e.  ( ( A [,] B )
-cn-> RR ) )
Assertion
Ref Expression
evthicc2  |-  ( ph  ->  E. x  e.  RR  E. y  e.  RR  ran  F  =  ( x [,] y ) )
Distinct variable groups:    x, y, A    x, B, y    x, F, y    ph, x, y

Proof of Theorem evthicc2
Dummy variables  a 
b  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evthicc.1 . . . 4  |-  ( ph  ->  A  e.  RR )
2 evthicc.2 . . . 4  |-  ( ph  ->  B  e.  RR )
3 evthicc.3 . . . 4  |-  ( ph  ->  A  <_  B )
4 evthicc.4 . . . 4  |-  ( ph  ->  F  e.  ( ( A [,] B )
-cn-> RR ) )
51, 2, 3, 4evthicc 20923 . . 3  |-  ( ph  ->  ( E. a  e.  ( A [,] B
) A. z  e.  ( A [,] B
) ( F `  z )  <_  ( F `  a )  /\  E. b  e.  ( A [,] B ) A. z  e.  ( A [,] B ) ( F `  b
)  <_  ( F `  z ) ) )
6 reeanv 2883 . . 3  |-  ( E. a  e.  ( A [,] B ) E. b  e.  ( A [,] B ) ( A. z  e.  ( A [,] B ) ( F `  z
)  <_  ( F `  a )  /\  A. z  e.  ( A [,] B ) ( F `
 b )  <_ 
( F `  z
) )  <->  ( E. a  e.  ( A [,] B ) A. z  e.  ( A [,] B
) ( F `  z )  <_  ( F `  a )  /\  E. b  e.  ( A [,] B ) A. z  e.  ( A [,] B ) ( F `  b
)  <_  ( F `  z ) ) )
75, 6sylibr 212 . 2  |-  ( ph  ->  E. a  e.  ( A [,] B ) E. b  e.  ( A [,] B ) ( A. z  e.  ( A [,] B
) ( F `  z )  <_  ( F `  a )  /\  A. z  e.  ( A [,] B ) ( F `  b
)  <_  ( F `  z ) ) )
8 r19.26 2844 . . . 4  |-  ( A. z  e.  ( A [,] B ) ( ( F `  z )  <_  ( F `  a )  /\  ( F `  b )  <_  ( F `  z
) )  <->  ( A. z  e.  ( A [,] B ) ( F `
 z )  <_ 
( F `  a
)  /\  A. z  e.  ( A [,] B
) ( F `  b )  <_  ( F `  z )
) )
94adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  ( a  e.  ( A [,] B
)  /\  b  e.  ( A [,] B ) ) )  ->  F  e.  ( ( A [,] B ) -cn-> RR ) )
10 cncff 20449 . . . . . . . . 9  |-  ( F  e.  ( ( A [,] B ) -cn-> RR )  ->  F :
( A [,] B
) --> RR )
119, 10syl 16 . . . . . . . 8  |-  ( (
ph  /\  ( a  e.  ( A [,] B
)  /\  b  e.  ( A [,] B ) ) )  ->  F : ( A [,] B ) --> RR )
12 simprr 756 . . . . . . . 8  |-  ( (
ph  /\  ( a  e.  ( A [,] B
)  /\  b  e.  ( A [,] B ) ) )  ->  b  e.  ( A [,] B
) )
1311, 12ffvelrnd 5839 . . . . . . 7  |-  ( (
ph  /\  ( a  e.  ( A [,] B
)  /\  b  e.  ( A [,] B ) ) )  ->  ( F `  b )  e.  RR )
1413adantr 465 . . . . . 6  |-  ( ( ( ph  /\  (
a  e.  ( A [,] B )  /\  b  e.  ( A [,] B ) ) )  /\  A. z  e.  ( A [,] B
) ( ( F `
 z )  <_ 
( F `  a
)  /\  ( F `  b )  <_  ( F `  z )
) )  ->  ( F `  b )  e.  RR )
15 simprl 755 . . . . . . . 8  |-  ( (
ph  /\  ( a  e.  ( A [,] B
)  /\  b  e.  ( A [,] B ) ) )  ->  a  e.  ( A [,] B
) )
1611, 15ffvelrnd 5839 . . . . . . 7  |-  ( (
ph  /\  ( a  e.  ( A [,] B
)  /\  b  e.  ( A [,] B ) ) )  ->  ( F `  a )  e.  RR )
1716adantr 465 . . . . . 6  |-  ( ( ( ph  /\  (
a  e.  ( A [,] B )  /\  b  e.  ( A [,] B ) ) )  /\  A. z  e.  ( A [,] B
) ( ( F `
 z )  <_ 
( F `  a
)  /\  ( F `  b )  <_  ( F `  z )
) )  ->  ( F `  a )  e.  RR )
1811adantr 465 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
a  e.  ( A [,] B )  /\  b  e.  ( A [,] B ) ) )  /\  A. z  e.  ( A [,] B
) ( ( F `
 z )  <_ 
( F `  a
)  /\  ( F `  b )  <_  ( F `  z )
) )  ->  F : ( A [,] B ) --> RR )
19 ffn 5554 . . . . . . . . . 10  |-  ( F : ( A [,] B ) --> RR  ->  F  Fn  ( A [,] B ) )
2018, 19syl 16 . . . . . . . . 9  |-  ( ( ( ph  /\  (
a  e.  ( A [,] B )  /\  b  e.  ( A [,] B ) ) )  /\  A. z  e.  ( A [,] B
) ( ( F `
 z )  <_ 
( F `  a
)  /\  ( F `  b )  <_  ( F `  z )
) )  ->  F  Fn  ( A [,] B
) )
2113adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
a  e.  ( A [,] B )  /\  b  e.  ( A [,] B ) ) )  /\  z  e.  ( A [,] B ) )  ->  ( F `  b )  e.  RR )
2216adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
a  e.  ( A [,] B )  /\  b  e.  ( A [,] B ) ) )  /\  z  e.  ( A [,] B ) )  ->  ( F `  a )  e.  RR )
23 elicc2 11352 . . . . . . . . . . . . . 14  |-  ( ( ( F `  b
)  e.  RR  /\  ( F `  a )  e.  RR )  -> 
( ( F `  z )  e.  ( ( F `  b
) [,] ( F `
 a ) )  <-> 
( ( F `  z )  e.  RR  /\  ( F `  b
)  <_  ( F `  z )  /\  ( F `  z )  <_  ( F `  a
) ) ) )
2421, 22, 23syl2anc 661 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
a  e.  ( A [,] B )  /\  b  e.  ( A [,] B ) ) )  /\  z  e.  ( A [,] B ) )  ->  ( ( F `  z )  e.  ( ( F `  b ) [,] ( F `  a )
)  <->  ( ( F `
 z )  e.  RR  /\  ( F `
 b )  <_ 
( F `  z
)  /\  ( F `  z )  <_  ( F `  a )
) ) )
25 3anass 969 . . . . . . . . . . . . 13  |-  ( ( ( F `  z
)  e.  RR  /\  ( F `  b )  <_  ( F `  z )  /\  ( F `  z )  <_  ( F `  a
) )  <->  ( ( F `  z )  e.  RR  /\  ( ( F `  b )  <_  ( F `  z )  /\  ( F `  z )  <_  ( F `  a
) ) ) )
2624, 25syl6bb 261 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
a  e.  ( A [,] B )  /\  b  e.  ( A [,] B ) ) )  /\  z  e.  ( A [,] B ) )  ->  ( ( F `  z )  e.  ( ( F `  b ) [,] ( F `  a )
)  <->  ( ( F `
 z )  e.  RR  /\  ( ( F `  b )  <_  ( F `  z )  /\  ( F `  z )  <_  ( F `  a
) ) ) ) )
27 ancom 450 . . . . . . . . . . . . 13  |-  ( ( ( F `  z
)  <_  ( F `  a )  /\  ( F `  b )  <_  ( F `  z
) )  <->  ( ( F `  b )  <_  ( F `  z
)  /\  ( F `  z )  <_  ( F `  a )
) )
2811ffvelrnda 5838 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
a  e.  ( A [,] B )  /\  b  e.  ( A [,] B ) ) )  /\  z  e.  ( A [,] B ) )  ->  ( F `  z )  e.  RR )
2928biantrurd 508 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
a  e.  ( A [,] B )  /\  b  e.  ( A [,] B ) ) )  /\  z  e.  ( A [,] B ) )  ->  ( (
( F `  b
)  <_  ( F `  z )  /\  ( F `  z )  <_  ( F `  a
) )  <->  ( ( F `  z )  e.  RR  /\  ( ( F `  b )  <_  ( F `  z )  /\  ( F `  z )  <_  ( F `  a
) ) ) ) )
3027, 29syl5bb 257 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
a  e.  ( A [,] B )  /\  b  e.  ( A [,] B ) ) )  /\  z  e.  ( A [,] B ) )  ->  ( (
( F `  z
)  <_  ( F `  a )  /\  ( F `  b )  <_  ( F `  z
) )  <->  ( ( F `  z )  e.  RR  /\  ( ( F `  b )  <_  ( F `  z )  /\  ( F `  z )  <_  ( F `  a
) ) ) ) )
3126, 30bitr4d 256 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
a  e.  ( A [,] B )  /\  b  e.  ( A [,] B ) ) )  /\  z  e.  ( A [,] B ) )  ->  ( ( F `  z )  e.  ( ( F `  b ) [,] ( F `  a )
)  <->  ( ( F `
 z )  <_ 
( F `  a
)  /\  ( F `  b )  <_  ( F `  z )
) ) )
3231ralbidva 2726 . . . . . . . . . 10  |-  ( (
ph  /\  ( a  e.  ( A [,] B
)  /\  b  e.  ( A [,] B ) ) )  ->  ( A. z  e.  ( A [,] B ) ( F `  z )  e.  ( ( F `
 b ) [,] ( F `  a
) )  <->  A. z  e.  ( A [,] B
) ( ( F `
 z )  <_ 
( F `  a
)  /\  ( F `  b )  <_  ( F `  z )
) ) )
3332biimpar 485 . . . . . . . . 9  |-  ( ( ( ph  /\  (
a  e.  ( A [,] B )  /\  b  e.  ( A [,] B ) ) )  /\  A. z  e.  ( A [,] B
) ( ( F `
 z )  <_ 
( F `  a
)  /\  ( F `  b )  <_  ( F `  z )
) )  ->  A. z  e.  ( A [,] B
) ( F `  z )  e.  ( ( F `  b
) [,] ( F `
 a ) ) )
34 ffnfv 5864 . . . . . . . . 9  |-  ( F : ( A [,] B ) --> ( ( F `  b ) [,] ( F `  a ) )  <->  ( F  Fn  ( A [,] B
)  /\  A. z  e.  ( A [,] B
) ( F `  z )  e.  ( ( F `  b
) [,] ( F `
 a ) ) ) )
3520, 33, 34sylanbrc 664 . . . . . . . 8  |-  ( ( ( ph  /\  (
a  e.  ( A [,] B )  /\  b  e.  ( A [,] B ) ) )  /\  A. z  e.  ( A [,] B
) ( ( F `
 z )  <_ 
( F `  a
)  /\  ( F `  b )  <_  ( F `  z )
) )  ->  F : ( A [,] B ) --> ( ( F `  b ) [,] ( F `  a ) ) )
36 frn 5560 . . . . . . . 8  |-  ( F : ( A [,] B ) --> ( ( F `  b ) [,] ( F `  a ) )  ->  ran  F  C_  ( ( F `  b ) [,] ( F `  a
) ) )
3735, 36syl 16 . . . . . . 7  |-  ( ( ( ph  /\  (
a  e.  ( A [,] B )  /\  b  e.  ( A [,] B ) ) )  /\  A. z  e.  ( A [,] B
) ( ( F `
 z )  <_ 
( F `  a
)  /\  ( F `  b )  <_  ( F `  z )
) )  ->  ran  F 
C_  ( ( F `
 b ) [,] ( F `  a
) ) )
381adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  ( a  e.  ( A [,] B
)  /\  b  e.  ( A [,] B ) ) )  ->  A  e.  RR )
392adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  ( a  e.  ( A [,] B
)  /\  b  e.  ( A [,] B ) ) )  ->  B  e.  RR )
40 ssid 3370 . . . . . . . . . 10  |-  ( A [,] B )  C_  ( A [,] B )
4140a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  ( a  e.  ( A [,] B
)  /\  b  e.  ( A [,] B ) ) )  ->  ( A [,] B )  C_  ( A [,] B ) )
42 ax-resscn 9331 . . . . . . . . . . 11  |-  RR  C_  CC
43 ssid 3370 . . . . . . . . . . 11  |-  CC  C_  CC
44 cncfss 20455 . . . . . . . . . . 11  |-  ( ( RR  C_  CC  /\  CC  C_  CC )  ->  (
( A [,] B
) -cn-> RR )  C_  (
( A [,] B
) -cn-> CC ) )
4542, 43, 44mp2an 672 . . . . . . . . . 10  |-  ( ( A [,] B )
-cn-> RR )  C_  (
( A [,] B
) -cn-> CC )
4645, 9sseldi 3349 . . . . . . . . 9  |-  ( (
ph  /\  ( a  e.  ( A [,] B
)  /\  b  e.  ( A [,] B ) ) )  ->  F  e.  ( ( A [,] B ) -cn-> CC ) )
4711ffvelrnda 5838 . . . . . . . . 9  |-  ( ( ( ph  /\  (
a  e.  ( A [,] B )  /\  b  e.  ( A [,] B ) ) )  /\  x  e.  ( A [,] B ) )  ->  ( F `  x )  e.  RR )
4838, 39, 12, 15, 41, 46, 47ivthicc 20922 . . . . . . . 8  |-  ( (
ph  /\  ( a  e.  ( A [,] B
)  /\  b  e.  ( A [,] B ) ) )  ->  (
( F `  b
) [,] ( F `
 a ) ) 
C_  ran  F )
4948adantr 465 . . . . . . 7  |-  ( ( ( ph  /\  (
a  e.  ( A [,] B )  /\  b  e.  ( A [,] B ) ) )  /\  A. z  e.  ( A [,] B
) ( ( F `
 z )  <_ 
( F `  a
)  /\  ( F `  b )  <_  ( F `  z )
) )  ->  (
( F `  b
) [,] ( F `
 a ) ) 
C_  ran  F )
5037, 49eqssd 3368 . . . . . 6  |-  ( ( ( ph  /\  (
a  e.  ( A [,] B )  /\  b  e.  ( A [,] B ) ) )  /\  A. z  e.  ( A [,] B
) ( ( F `
 z )  <_ 
( F `  a
)  /\  ( F `  b )  <_  ( F `  z )
) )  ->  ran  F  =  ( ( F `
 b ) [,] ( F `  a
) ) )
51 rspceov 6123 . . . . . 6  |-  ( ( ( F `  b
)  e.  RR  /\  ( F `  a )  e.  RR  /\  ran  F  =  ( ( F `
 b ) [,] ( F `  a
) ) )  ->  E. x  e.  RR  E. y  e.  RR  ran  F  =  ( x [,] y ) )
5214, 17, 50, 51syl3anc 1218 . . . . 5  |-  ( ( ( ph  /\  (
a  e.  ( A [,] B )  /\  b  e.  ( A [,] B ) ) )  /\  A. z  e.  ( A [,] B
) ( ( F `
 z )  <_ 
( F `  a
)  /\  ( F `  b )  <_  ( F `  z )
) )  ->  E. x  e.  RR  E. y  e.  RR  ran  F  =  ( x [,] y
) )
5352ex 434 . . . 4  |-  ( (
ph  /\  ( a  e.  ( A [,] B
)  /\  b  e.  ( A [,] B ) ) )  ->  ( A. z  e.  ( A [,] B ) ( ( F `  z
)  <_  ( F `  a )  /\  ( F `  b )  <_  ( F `  z
) )  ->  E. x  e.  RR  E. y  e.  RR  ran  F  =  ( x [,] y
) ) )
548, 53syl5bir 218 . . 3  |-  ( (
ph  /\  ( a  e.  ( A [,] B
)  /\  b  e.  ( A [,] B ) ) )  ->  (
( A. z  e.  ( A [,] B
) ( F `  z )  <_  ( F `  a )  /\  A. z  e.  ( A [,] B ) ( F `  b
)  <_  ( F `  z ) )  ->  E. x  e.  RR  E. y  e.  RR  ran  F  =  ( x [,] y ) ) )
5554rexlimdvva 2843 . 2  |-  ( ph  ->  ( E. a  e.  ( A [,] B
) E. b  e.  ( A [,] B
) ( A. z  e.  ( A [,] B
) ( F `  z )  <_  ( F `  a )  /\  A. z  e.  ( A [,] B ) ( F `  b
)  <_  ( F `  z ) )  ->  E. x  e.  RR  E. y  e.  RR  ran  F  =  ( x [,] y ) ) )
567, 55mpd 15 1  |-  ( ph  ->  E. x  e.  RR  E. y  e.  RR  ran  F  =  ( x [,] y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   A.wral 2710   E.wrex 2711    C_ wss 3323   class class class wbr 4287   ran crn 4836    Fn wfn 5408   -->wf 5409   ` cfv 5413  (class class class)co 6086   CCcc 9272   RRcr 9273    <_ cle 9411   [,]cicc 11295   -cn->ccncf 20432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-inf2 7839  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351  ax-pre-sup 9352  ax-mulf 9354
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-int 4124  df-iun 4168  df-iin 4169  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-se 4675  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-of 6315  df-om 6472  df-1st 6572  df-2nd 6573  df-supp 6686  df-recs 6824  df-rdg 6858  df-1o 6912  df-2o 6913  df-oadd 6916  df-er 7093  df-map 7208  df-ixp 7256  df-en 7303  df-dom 7304  df-sdom 7305  df-fin 7306  df-fsupp 7613  df-fi 7653  df-sup 7683  df-oi 7716  df-card 8101  df-cda 8329  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-div 9986  df-nn 10315  df-2 10372  df-3 10373  df-4 10374  df-5 10375  df-6 10376  df-7 10377  df-8 10378  df-9 10379  df-10 10380  df-n0 10572  df-z 10639  df-dec 10748  df-uz 10854  df-q 10946  df-rp 10984  df-xneg 11081  df-xadd 11082  df-xmul 11083  df-ioo 11296  df-icc 11299  df-fz 11430  df-fzo 11541  df-seq 11799  df-exp 11858  df-hash 12096  df-cj 12580  df-re 12581  df-im 12582  df-sqr 12716  df-abs 12717  df-struct 14168  df-ndx 14169  df-slot 14170  df-base 14171  df-sets 14172  df-ress 14173  df-plusg 14243  df-mulr 14244  df-starv 14245  df-sca 14246  df-vsca 14247  df-ip 14248  df-tset 14249  df-ple 14250  df-ds 14252  df-unif 14253  df-hom 14254  df-cco 14255  df-rest 14353  df-topn 14354  df-0g 14372  df-gsum 14373  df-topgen 14374  df-pt 14375  df-prds 14378  df-xrs 14432  df-qtop 14437  df-imas 14438  df-xps 14440  df-mre 14516  df-mrc 14517  df-acs 14519  df-mnd 15407  df-submnd 15457  df-mulg 15539  df-cntz 15826  df-cmn 16270  df-psmet 17789  df-xmet 17790  df-met 17791  df-bl 17792  df-mopn 17793  df-cnfld 17799  df-top 18483  df-bases 18485  df-topon 18486  df-topsp 18487  df-cn 18811  df-cnp 18812  df-cmp 18970  df-tx 19115  df-hmeo 19308  df-xms 19875  df-ms 19876  df-tms 19877  df-cncf 20434
This theorem is referenced by:  dvcnvrelem1  21469
  Copyright terms: Public domain W3C validator