MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evth2 Structured version   Unicode version

Theorem evth2 21328
Description: The Extreme Value Theorem, minimum version. A continuous function from a nonempty compact topological space to the reals attains its minimum at some point in the domain. (Contributed by Mario Carneiro, 12-Aug-2014.)
Hypotheses
Ref Expression
bndth.1  |-  X  = 
U. J
bndth.2  |-  K  =  ( topGen `  ran  (,) )
bndth.3  |-  ( ph  ->  J  e.  Comp )
bndth.4  |-  ( ph  ->  F  e.  ( J  Cn  K ) )
evth.5  |-  ( ph  ->  X  =/=  (/) )
Assertion
Ref Expression
evth2  |-  ( ph  ->  E. x  e.  X  A. y  e.  X  ( F `  x )  <_  ( F `  y ) )
Distinct variable groups:    x, y, F    y, K    ph, x, y   
x, X, y    x, J, y
Allowed substitution hint:    K( x)

Proof of Theorem evth2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 bndth.1 . . 3  |-  X  = 
U. J
2 bndth.2 . . 3  |-  K  =  ( topGen `  ran  (,) )
3 bndth.3 . . 3  |-  ( ph  ->  J  e.  Comp )
4 cmptop 19763 . . . . . 6  |-  ( J  e.  Comp  ->  J  e. 
Top )
53, 4syl 16 . . . . 5  |-  ( ph  ->  J  e.  Top )
61toptopon 19303 . . . . 5  |-  ( J  e.  Top  <->  J  e.  (TopOn `  X ) )
75, 6sylib 196 . . . 4  |-  ( ph  ->  J  e.  (TopOn `  X ) )
8 bndth.4 . . . . . . 7  |-  ( ph  ->  F  e.  ( J  Cn  K ) )
9 uniretop 21137 . . . . . . . . 9  |-  RR  =  U. ( topGen `  ran  (,) )
102unieqi 4260 . . . . . . . . 9  |-  U. K  =  U. ( topGen `  ran  (,) )
119, 10eqtr4i 2499 . . . . . . . 8  |-  RR  =  U. K
121, 11cnf 19615 . . . . . . 7  |-  ( F  e.  ( J  Cn  K )  ->  F : X --> RR )
138, 12syl 16 . . . . . 6  |-  ( ph  ->  F : X --> RR )
1413feqmptd 5927 . . . . 5  |-  ( ph  ->  F  =  ( z  e.  X  |->  ( F `
 z ) ) )
1514, 8eqeltrrd 2556 . . . 4  |-  ( ph  ->  ( z  e.  X  |->  ( F `  z
) )  e.  ( J  Cn  K ) )
16 retopon 21138 . . . . . 6  |-  ( topGen ` 
ran  (,) )  e.  (TopOn `  RR )
172, 16eqeltri 2551 . . . . 5  |-  K  e.  (TopOn `  RR )
1817a1i 11 . . . 4  |-  ( ph  ->  K  e.  (TopOn `  RR ) )
19 eqid 2467 . . . . . . . . . 10  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
2019cnfldtopon 21158 . . . . . . . . 9  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
2120a1i 11 . . . . . . . 8  |-  ( ph  ->  ( TopOpen ` fld )  e.  (TopOn `  CC ) )
22 0cnd 9601 . . . . . . . 8  |-  ( ph  ->  0  e.  CC )
2318, 21, 22cnmptc 20031 . . . . . . 7  |-  ( ph  ->  ( y  e.  RR  |->  0 )  e.  ( K  Cn  ( TopOpen ` fld )
) )
2419tgioo2 21176 . . . . . . . . 9  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
252, 24eqtri 2496 . . . . . . . 8  |-  K  =  ( ( TopOpen ` fld )t  RR )
26 ax-resscn 9561 . . . . . . . . 9  |-  RR  C_  CC
2726a1i 11 . . . . . . . 8  |-  ( ph  ->  RR  C_  CC )
2821cnmptid 20030 . . . . . . . 8  |-  ( ph  ->  ( y  e.  CC  |->  y )  e.  ( ( TopOpen ` fld )  Cn  ( TopOpen
` fld
) ) )
2925, 21, 27, 28cnmpt1res 20045 . . . . . . 7  |-  ( ph  ->  ( y  e.  RR  |->  y )  e.  ( K  Cn  ( TopOpen ` fld )
) )
3019subcn 21238 . . . . . . . 8  |-  -  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) )
3130a1i 11 . . . . . . 7  |-  ( ph  ->  -  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld )
)  Cn  ( TopOpen ` fld )
) )
3218, 23, 29, 31cnmpt12f 20035 . . . . . 6  |-  ( ph  ->  ( y  e.  RR  |->  ( 0  -  y
) )  e.  ( K  Cn  ( TopOpen ` fld )
) )
33 df-neg 9820 . . . . . . . . . . 11  |-  -u y  =  ( 0  -  y )
34 renegcl 9894 . . . . . . . . . . 11  |-  ( y  e.  RR  ->  -u y  e.  RR )
3533, 34syl5eqelr 2560 . . . . . . . . . 10  |-  ( y  e.  RR  ->  (
0  -  y )  e.  RR )
3635adantl 466 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  RR )  ->  ( 0  -  y )  e.  RR )
37 eqid 2467 . . . . . . . . 9  |-  ( y  e.  RR  |->  ( 0  -  y ) )  =  ( y  e.  RR  |->  ( 0  -  y ) )
3836, 37fmptd 6056 . . . . . . . 8  |-  ( ph  ->  ( y  e.  RR  |->  ( 0  -  y
) ) : RR --> RR )
39 frn 5743 . . . . . . . 8  |-  ( ( y  e.  RR  |->  ( 0  -  y ) ) : RR --> RR  ->  ran  ( y  e.  RR  |->  ( 0  -  y
) )  C_  RR )
4038, 39syl 16 . . . . . . 7  |-  ( ph  ->  ran  ( y  e.  RR  |->  ( 0  -  y ) )  C_  RR )
41 cnrest2 19655 . . . . . . 7  |-  ( ( ( TopOpen ` fld )  e.  (TopOn `  CC )  /\  ran  ( y  e.  RR  |->  ( 0  -  y
) )  C_  RR  /\  RR  C_  CC )  ->  ( ( y  e.  RR  |->  ( 0  -  y ) )  e.  ( K  Cn  ( TopOpen
` fld
) )  <->  ( y  e.  RR  |->  ( 0  -  y ) )  e.  ( K  Cn  (
( TopOpen ` fld )t  RR ) ) ) )
4221, 40, 27, 41syl3anc 1228 . . . . . 6  |-  ( ph  ->  ( ( y  e.  RR  |->  ( 0  -  y ) )  e.  ( K  Cn  ( TopOpen
` fld
) )  <->  ( y  e.  RR  |->  ( 0  -  y ) )  e.  ( K  Cn  (
( TopOpen ` fld )t  RR ) ) ) )
4332, 42mpbid 210 . . . . 5  |-  ( ph  ->  ( y  e.  RR  |->  ( 0  -  y
) )  e.  ( K  Cn  ( (
TopOpen ` fld )t  RR ) ) )
4425oveq2i 6306 . . . . 5  |-  ( K  Cn  K )  =  ( K  Cn  (
( TopOpen ` fld )t  RR ) )
4543, 44syl6eleqr 2566 . . . 4  |-  ( ph  ->  ( y  e.  RR  |->  ( 0  -  y
) )  e.  ( K  Cn  K ) )
46 negeq 9824 . . . . 5  |-  ( y  =  ( F `  z )  ->  -u y  =  -u ( F `  z ) )
4733, 46syl5eqr 2522 . . . 4  |-  ( y  =  ( F `  z )  ->  (
0  -  y )  =  -u ( F `  z ) )
487, 15, 18, 45, 47cnmpt11 20032 . . 3  |-  ( ph  ->  ( z  e.  X  |-> 
-u ( F `  z ) )  e.  ( J  Cn  K
) )
49 evth.5 . . 3  |-  ( ph  ->  X  =/=  (/) )
501, 2, 3, 48, 49evth 21327 . 2  |-  ( ph  ->  E. x  e.  X  A. y  e.  X  ( ( z  e.  X  |->  -u ( F `  z ) ) `  y )  <_  (
( z  e.  X  |-> 
-u ( F `  z ) ) `  x ) )
51 fveq2 5872 . . . . . . . . 9  |-  ( z  =  y  ->  ( F `  z )  =  ( F `  y ) )
5251negeqd 9826 . . . . . . . 8  |-  ( z  =  y  ->  -u ( F `  z )  =  -u ( F `  y ) )
53 eqid 2467 . . . . . . . 8  |-  ( z  e.  X  |->  -u ( F `  z )
)  =  ( z  e.  X  |->  -u ( F `  z )
)
54 negex 9830 . . . . . . . 8  |-  -u ( F `  y )  e.  _V
5552, 53, 54fvmpt 5957 . . . . . . 7  |-  ( y  e.  X  ->  (
( z  e.  X  |-> 
-u ( F `  z ) ) `  y )  =  -u ( F `  y ) )
5655adantl 466 . . . . . 6  |-  ( ( ( ph  /\  x  e.  X )  /\  y  e.  X )  ->  (
( z  e.  X  |-> 
-u ( F `  z ) ) `  y )  =  -u ( F `  y ) )
57 fveq2 5872 . . . . . . . . 9  |-  ( z  =  x  ->  ( F `  z )  =  ( F `  x ) )
5857negeqd 9826 . . . . . . . 8  |-  ( z  =  x  ->  -u ( F `  z )  =  -u ( F `  x ) )
59 negex 9830 . . . . . . . 8  |-  -u ( F `  x )  e.  _V
6058, 53, 59fvmpt 5957 . . . . . . 7  |-  ( x  e.  X  ->  (
( z  e.  X  |-> 
-u ( F `  z ) ) `  x )  =  -u ( F `  x ) )
6160ad2antlr 726 . . . . . 6  |-  ( ( ( ph  /\  x  e.  X )  /\  y  e.  X )  ->  (
( z  e.  X  |-> 
-u ( F `  z ) ) `  x )  =  -u ( F `  x ) )
6256, 61breq12d 4466 . . . . 5  |-  ( ( ( ph  /\  x  e.  X )  /\  y  e.  X )  ->  (
( ( z  e.  X  |->  -u ( F `  z ) ) `  y )  <_  (
( z  e.  X  |-> 
-u ( F `  z ) ) `  x )  <->  -u ( F `
 y )  <_  -u ( F `  x
) ) )
6313ffvelrnda 6032 . . . . . . 7  |-  ( (
ph  /\  x  e.  X )  ->  ( F `  x )  e.  RR )
6463adantr 465 . . . . . 6  |-  ( ( ( ph  /\  x  e.  X )  /\  y  e.  X )  ->  ( F `  x )  e.  RR )
6513ffvelrnda 6032 . . . . . . 7  |-  ( (
ph  /\  y  e.  X )  ->  ( F `  y )  e.  RR )
6665adantlr 714 . . . . . 6  |-  ( ( ( ph  /\  x  e.  X )  /\  y  e.  X )  ->  ( F `  y )  e.  RR )
6764, 66lenegd 10143 . . . . 5  |-  ( ( ( ph  /\  x  e.  X )  /\  y  e.  X )  ->  (
( F `  x
)  <_  ( F `  y )  <->  -u ( F `
 y )  <_  -u ( F `  x
) ) )
6862, 67bitr4d 256 . . . 4  |-  ( ( ( ph  /\  x  e.  X )  /\  y  e.  X )  ->  (
( ( z  e.  X  |->  -u ( F `  z ) ) `  y )  <_  (
( z  e.  X  |-> 
-u ( F `  z ) ) `  x )  <->  ( F `  x )  <_  ( F `  y )
) )
6968ralbidva 2903 . . 3  |-  ( (
ph  /\  x  e.  X )  ->  ( A. y  e.  X  ( ( z  e.  X  |->  -u ( F `  z ) ) `  y )  <_  (
( z  e.  X  |-> 
-u ( F `  z ) ) `  x )  <->  A. y  e.  X  ( F `  x )  <_  ( F `  y )
) )
7069rexbidva 2975 . 2  |-  ( ph  ->  ( E. x  e.  X  A. y  e.  X  ( ( z  e.  X  |->  -u ( F `  z )
) `  y )  <_  ( ( z  e.  X  |->  -u ( F `  z ) ) `  x )  <->  E. x  e.  X  A. y  e.  X  ( F `  x )  <_  ( F `  y )
) )
7150, 70mpbid 210 1  |-  ( ph  ->  E. x  e.  X  A. y  e.  X  ( F `  x )  <_  ( F `  y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767    =/= wne 2662   A.wral 2817   E.wrex 2818    C_ wss 3481   (/)c0 3790   U.cuni 4251   class class class wbr 4453    |-> cmpt 4511   ran crn 5006   -->wf 5590   ` cfv 5594  (class class class)co 6295   CCcc 9502   RRcr 9503   0cc0 9504    <_ cle 9641    - cmin 9817   -ucneg 9818   (,)cioo 11541   ↾t crest 14693   TopOpenctopn 14694   topGenctg 14710  ℂfldccnfld 18290   Topctop 19263  TopOnctopon 19264    Cn ccn 19593   Compccmp 19754    tX ctx 19929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-inf2 8070  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581  ax-pre-sup 9582  ax-mulf 9584
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-int 4289  df-iun 4333  df-iin 4334  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-se 4845  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-of 6535  df-om 6696  df-1st 6795  df-2nd 6796  df-supp 6914  df-recs 7054  df-rdg 7088  df-1o 7142  df-2o 7143  df-oadd 7146  df-er 7323  df-map 7434  df-ixp 7482  df-en 7529  df-dom 7530  df-sdom 7531  df-fin 7532  df-fsupp 7842  df-fi 7883  df-sup 7913  df-oi 7947  df-card 8332  df-cda 8560  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-div 10219  df-nn 10549  df-2 10606  df-3 10607  df-4 10608  df-5 10609  df-6 10610  df-7 10611  df-8 10612  df-9 10613  df-10 10614  df-n0 10808  df-z 10877  df-dec 10989  df-uz 11095  df-q 11195  df-rp 11233  df-xneg 11330  df-xadd 11331  df-xmul 11332  df-ioo 11545  df-icc 11548  df-fz 11685  df-fzo 11805  df-seq 12088  df-exp 12147  df-hash 12386  df-cj 12912  df-re 12913  df-im 12914  df-sqrt 13048  df-abs 13049  df-struct 14509  df-ndx 14510  df-slot 14511  df-base 14512  df-sets 14513  df-ress 14514  df-plusg 14585  df-mulr 14586  df-starv 14587  df-sca 14588  df-vsca 14589  df-ip 14590  df-tset 14591  df-ple 14592  df-ds 14594  df-unif 14595  df-hom 14596  df-cco 14597  df-rest 14695  df-topn 14696  df-0g 14714  df-gsum 14715  df-topgen 14716  df-pt 14717  df-prds 14720  df-xrs 14774  df-qtop 14779  df-imas 14780  df-xps 14782  df-mre 14858  df-mrc 14859  df-acs 14861  df-mgm 15746  df-sgrp 15785  df-mnd 15795  df-submnd 15840  df-mulg 15932  df-cntz 16227  df-cmn 16673  df-psmet 18281  df-xmet 18282  df-met 18283  df-bl 18284  df-mopn 18285  df-cnfld 18291  df-top 19268  df-bases 19270  df-topon 19271  df-topsp 19272  df-cn 19596  df-cnp 19597  df-cmp 19755  df-tx 19931  df-hmeo 20124  df-xms 20691  df-ms 20692  df-tms 20693
This theorem is referenced by:  lebnumlem3  21331  evthicc  21739  ftalem3  23214  evth2f  31292  stoweidlem28  31651
  Copyright terms: Public domain W3C validator