MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evth Structured version   Unicode version

Theorem evth 20372
Description: The Extreme Value Theorem. A continuous function from a nonempty compact topological space to the reals attains its maximum at some point in the domain. (Contributed by Mario Carneiro, 12-Aug-2014.)
Hypotheses
Ref Expression
bndth.1  |-  X  = 
U. J
bndth.2  |-  K  =  ( topGen `  ran  (,) )
bndth.3  |-  ( ph  ->  J  e.  Comp )
bndth.4  |-  ( ph  ->  F  e.  ( J  Cn  K ) )
evth.5  |-  ( ph  ->  X  =/=  (/) )
Assertion
Ref Expression
evth  |-  ( ph  ->  E. x  e.  X  A. y  e.  X  ( F `  y )  <_  ( F `  x ) )
Distinct variable groups:    x, y, F    y, K    ph, x, y   
x, X, y    x, J, y
Allowed substitution hint:    K( x)

Proof of Theorem evth
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 bndth.1 . . . . 5  |-  X  = 
U. J
2 bndth.2 . . . . 5  |-  K  =  ( topGen `  ran  (,) )
3 bndth.3 . . . . . 6  |-  ( ph  ->  J  e.  Comp )
43adantr 462 . . . . 5  |-  ( (
ph  /\  F : X
--> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  ->  J  e.  Comp )
5 cmptop 18839 . . . . . . . . . 10  |-  ( J  e.  Comp  ->  J  e. 
Top )
64, 5syl 16 . . . . . . . . 9  |-  ( (
ph  /\  F : X
--> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  ->  J  e.  Top )
71toptopon 18379 . . . . . . . . 9  |-  ( J  e.  Top  <->  J  e.  (TopOn `  X ) )
86, 7sylib 196 . . . . . . . 8  |-  ( (
ph  /\  F : X
--> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  ->  J  e.  (TopOn `  X )
)
9 eqid 2433 . . . . . . . . . . 11  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
109cnfldtopon 20203 . . . . . . . . . 10  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
1110a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  F : X
--> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  ->  ( TopOpen
` fld
)  e.  (TopOn `  CC ) )
12 1cnd 9389 . . . . . . . . 9  |-  ( (
ph  /\  F : X
--> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  ->  1  e.  CC )
138, 11, 12cnmptc 19076 . . . . . . . 8  |-  ( (
ph  /\  F : X
--> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  ->  (
z  e.  X  |->  1 )  e.  ( J  Cn  ( TopOpen ` fld ) ) )
14 bndth.4 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  F  e.  ( J  Cn  K ) )
15 uniretop 20182 . . . . . . . . . . . . . . . . . . 19  |-  RR  =  U. ( topGen `  ran  (,) )
162unieqi 4088 . . . . . . . . . . . . . . . . . . 19  |-  U. K  =  U. ( topGen `  ran  (,) )
1715, 16eqtr4i 2456 . . . . . . . . . . . . . . . . . 18  |-  RR  =  U. K
181, 17cnf 18691 . . . . . . . . . . . . . . . . 17  |-  ( F  e.  ( J  Cn  K )  ->  F : X --> RR )
1914, 18syl 16 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  F : X --> RR )
20 frn 5553 . . . . . . . . . . . . . . . 16  |-  ( F : X --> RR  ->  ran 
F  C_  RR )
2119, 20syl 16 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ran  F  C_  RR )
22 fdm 5551 . . . . . . . . . . . . . . . . . 18  |-  ( F : X --> RR  ->  dom 
F  =  X )
2319, 22syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  dom  F  =  X )
24 evth.5 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  X  =/=  (/) )
2523, 24eqnetrd 2616 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  dom  F  =/=  (/) )
26 dm0rn0 5043 . . . . . . . . . . . . . . . . 17  |-  ( dom 
F  =  (/)  <->  ran  F  =  (/) )
2726necon3bii 2630 . . . . . . . . . . . . . . . 16  |-  ( dom 
F  =/=  (/)  <->  ran  F  =/=  (/) )
2825, 27sylib 196 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ran  F  =/=  (/) )
291, 2, 3, 14bndth 20371 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  E. x  e.  RR  A. y  e.  X  ( F `  y )  <_  x )
30 ffn 5547 . . . . . . . . . . . . . . . . . . 19  |-  ( F : X --> RR  ->  F  Fn  X )
3119, 30syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  F  Fn  X )
32 breq1 4283 . . . . . . . . . . . . . . . . . . 19  |-  ( z  =  ( F `  y )  ->  (
z  <_  x  <->  ( F `  y )  <_  x
) )
3332ralrn 5834 . . . . . . . . . . . . . . . . . 18  |-  ( F  Fn  X  ->  ( A. z  e.  ran  F  z  <_  x  <->  A. y  e.  X  ( F `  y )  <_  x
) )
3431, 33syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( A. z  e. 
ran  F  z  <_  x  <->  A. y  e.  X  ( F `  y )  <_  x ) )
3534rexbidv 2726 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( E. x  e.  RR  A. z  e. 
ran  F  z  <_  x  <->  E. x  e.  RR  A. y  e.  X  ( F `  y )  <_  x ) )
3629, 35mpbird 232 . . . . . . . . . . . . . . 15  |-  ( ph  ->  E. x  e.  RR  A. z  e.  ran  F  z  <_  x )
3721, 28, 363jca 1161 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ran  F  C_  RR  /\  ran  F  =/=  (/)  /\  E. x  e.  RR  A. z  e. 
ran  F  z  <_  x ) )
38 suprcl 10277 . . . . . . . . . . . . . 14  |-  ( ( ran  F  C_  RR  /\ 
ran  F  =/=  (/)  /\  E. x  e.  RR  A. z  e.  ran  F  z  <_  x )  ->  sup ( ran  F ,  RR ,  <  )  e.  RR )
3937, 38syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  sup ( ran  F ,  RR ,  <  )  e.  RR )
4039recnd 9399 . . . . . . . . . . . 12  |-  ( ph  ->  sup ( ran  F ,  RR ,  <  )  e.  CC )
4140adantr 462 . . . . . . . . . . 11  |-  ( (
ph  /\  F : X
--> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  ->  sup ( ran  F ,  RR ,  <  )  e.  CC )
428, 11, 41cnmptc 19076 . . . . . . . . . 10  |-  ( (
ph  /\  F : X
--> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  ->  (
z  e.  X  |->  sup ( ran  F ,  RR ,  <  ) )  e.  ( J  Cn  ( TopOpen ` fld ) ) )
4319feqmptd 5732 . . . . . . . . . . . 12  |-  ( ph  ->  F  =  ( z  e.  X  |->  ( F `
 z ) ) )
449cnfldtop 20204 . . . . . . . . . . . . . 14  |-  ( TopOpen ` fld )  e.  Top
45 cnrest2r 18732 . . . . . . . . . . . . . 14  |-  ( (
TopOpen ` fld )  e.  Top  ->  ( J  Cn  ( (
TopOpen ` fld )t  RR ) )  C_  ( J  Cn  ( TopOpen
` fld
) ) )
4644, 45ax-mp 5 . . . . . . . . . . . . 13  |-  ( J  Cn  ( ( TopOpen ` fld )t  RR ) )  C_  ( J  Cn  ( TopOpen ` fld ) )
479tgioo2 20221 . . . . . . . . . . . . . . . 16  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
482, 47eqtri 2453 . . . . . . . . . . . . . . 15  |-  K  =  ( ( TopOpen ` fld )t  RR )
4948oveq2i 6091 . . . . . . . . . . . . . 14  |-  ( J  Cn  K )  =  ( J  Cn  (
( TopOpen ` fld )t  RR ) )
5014, 49syl6eleq 2523 . . . . . . . . . . . . 13  |-  ( ph  ->  F  e.  ( J  Cn  ( ( TopOpen ` fld )t  RR ) ) )
5146, 50sseldi 3342 . . . . . . . . . . . 12  |-  ( ph  ->  F  e.  ( J  Cn  ( TopOpen ` fld ) ) )
5243, 51eqeltrrd 2508 . . . . . . . . . . 11  |-  ( ph  ->  ( z  e.  X  |->  ( F `  z
) )  e.  ( J  Cn  ( TopOpen ` fld )
) )
5352adantr 462 . . . . . . . . . 10  |-  ( (
ph  /\  F : X
--> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  ->  (
z  e.  X  |->  ( F `  z ) )  e.  ( J  Cn  ( TopOpen ` fld ) ) )
549subcn 20283 . . . . . . . . . . 11  |-  -  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) )
5554a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  F : X
--> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  ->  -  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) ) )
568, 42, 53, 55cnmpt12f 19080 . . . . . . . . 9  |-  ( (
ph  /\  F : X
--> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  ->  (
z  e.  X  |->  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) ) )  e.  ( J  Cn  ( TopOpen ` fld ) ) )
5739ad2antrr 718 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  z  e.  X )  ->  sup ( ran  F ,  RR ,  <  )  e.  RR )
58 ffvelrn 5829 . . . . . . . . . . . . . . . . . 18  |-  ( ( F : X --> ( RR 
\  { sup ( ran  F ,  RR ,  <  ) } )  /\  z  e.  X )  ->  ( F `  z
)  e.  ( RR 
\  { sup ( ran  F ,  RR ,  <  ) } ) )
5958adantll 706 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  z  e.  X )  ->  ( F `  z
)  e.  ( RR 
\  { sup ( ran  F ,  RR ,  <  ) } ) )
60 eldifsn 3988 . . . . . . . . . . . . . . . . 17  |-  ( ( F `  z )  e.  ( RR  \  { sup ( ran  F ,  RR ,  <  ) } )  <->  ( ( F `  z )  e.  RR  /\  ( F `
 z )  =/= 
sup ( ran  F ,  RR ,  <  )
) )
6159, 60sylib 196 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  z  e.  X )  ->  ( ( F `  z )  e.  RR  /\  ( F `  z
)  =/=  sup ( ran  F ,  RR ,  <  ) ) )
6261simpld 456 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  z  e.  X )  ->  ( F `  z
)  e.  RR )
6357, 62resubcld 9763 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  z  e.  X )  ->  ( sup ( ran 
F ,  RR ,  <  )  -  ( F `
 z ) )  e.  RR )
6463recnd 9399 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  z  e.  X )  ->  ( sup ( ran 
F ,  RR ,  <  )  -  ( F `
 z ) )  e.  CC )
6557recnd 9399 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  z  e.  X )  ->  sup ( ran  F ,  RR ,  <  )  e.  CC )
6662recnd 9399 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  z  e.  X )  ->  ( F `  z
)  e.  CC )
6761simprd 460 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  z  e.  X )  ->  ( F `  z
)  =/=  sup ( ran  F ,  RR ,  <  ) )
6867necomd 2685 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  z  e.  X )  ->  sup ( ran  F ,  RR ,  <  )  =/=  ( F `  z
) )
6965, 66, 68subne0d 9715 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  z  e.  X )  ->  ( sup ( ran 
F ,  RR ,  <  )  -  ( F `
 z ) )  =/=  0 )
70 eldifsn 3988 . . . . . . . . . . . . 13  |-  ( ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) )  e.  ( CC  \  {
0 } )  <->  ( ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) )  e.  CC  /\  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) )  =/=  0 ) )
7164, 69, 70sylanbrc 657 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  z  e.  X )  ->  ( sup ( ran 
F ,  RR ,  <  )  -  ( F `
 z ) )  e.  ( CC  \  { 0 } ) )
72 eqid 2433 . . . . . . . . . . . 12  |-  ( z  e.  X  |->  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) ) )  =  ( z  e.  X  |->  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) ) )
7371, 72fmptd 5855 . . . . . . . . . . 11  |-  ( (
ph  /\  F : X
--> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  ->  (
z  e.  X  |->  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) ) ) : X --> ( CC 
\  { 0 } ) )
74 frn 5553 . . . . . . . . . . 11  |-  ( ( z  e.  X  |->  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) ) ) : X --> ( CC 
\  { 0 } )  ->  ran  ( z  e.  X  |->  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) ) )  C_  ( CC  \  { 0 } ) )
7573, 74syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  F : X
--> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  ->  ran  ( z  e.  X  |->  ( sup ( ran 
F ,  RR ,  <  )  -  ( F `
 z ) ) )  C_  ( CC  \  { 0 } ) )
76 difssd 3472 . . . . . . . . . 10  |-  ( (
ph  /\  F : X
--> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  ->  ( CC  \  { 0 } )  C_  CC )
77 cnrest2 18731 . . . . . . . . . 10  |-  ( ( ( TopOpen ` fld )  e.  (TopOn `  CC )  /\  ran  ( z  e.  X  |->  ( sup ( ran 
F ,  RR ,  <  )  -  ( F `
 z ) ) )  C_  ( CC  \  { 0 } )  /\  ( CC  \  { 0 } ) 
C_  CC )  -> 
( ( z  e.  X  |->  ( sup ( ran  F ,  RR ,  <  )  -  ( F `
 z ) ) )  e.  ( J  Cn  ( TopOpen ` fld ) )  <->  ( z  e.  X  |->  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) ) )  e.  ( J  Cn  ( (
TopOpen ` fld )t  ( CC  \  {
0 } ) ) ) ) )
7811, 75, 76, 77syl3anc 1211 . . . . . . . . 9  |-  ( (
ph  /\  F : X
--> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  ->  (
( z  e.  X  |->  ( sup ( ran 
F ,  RR ,  <  )  -  ( F `
 z ) ) )  e.  ( J  Cn  ( TopOpen ` fld ) )  <->  ( z  e.  X  |->  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) ) )  e.  ( J  Cn  ( (
TopOpen ` fld )t  ( CC  \  {
0 } ) ) ) ) )
7956, 78mpbid 210 . . . . . . . 8  |-  ( (
ph  /\  F : X
--> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  ->  (
z  e.  X  |->  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) ) )  e.  ( J  Cn  ( ( TopOpen ` fld )t  ( CC  \  { 0 } ) ) ) )
80 eqid 2433 . . . . . . . . . 10  |-  ( (
TopOpen ` fld )t  ( CC  \  {
0 } ) )  =  ( ( TopOpen ` fld )t  ( CC  \  { 0 } ) )
819, 80divcn 20285 . . . . . . . . 9  |-  /  e.  ( ( ( TopOpen ` fld )  tX  ( ( TopOpen ` fld )t  ( CC  \  { 0 } ) ) )  Cn  ( TopOpen
` fld
) )
8281a1i 11 . . . . . . . 8  |-  ( (
ph  /\  F : X
--> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  ->  /  e.  ( ( ( TopOpen ` fld )  tX  ( ( TopOpen ` fld )t  ( CC  \  { 0 } ) ) )  Cn  ( TopOpen
` fld
) ) )
838, 13, 79, 82cnmpt12f 19080 . . . . . . 7  |-  ( (
ph  /\  F : X
--> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  ->  (
z  e.  X  |->  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) ) ) )  e.  ( J  Cn  ( TopOpen
` fld
) ) )
8463, 69rereccld 10145 . . . . . . . . . 10  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  z  e.  X )  ->  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) ) )  e.  RR )
85 eqid 2433 . . . . . . . . . 10  |-  ( z  e.  X  |->  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `
 z ) ) ) )  =  ( z  e.  X  |->  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) ) ) )
8684, 85fmptd 5855 . . . . . . . . 9  |-  ( (
ph  /\  F : X
--> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  ->  (
z  e.  X  |->  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) ) ) ) : X --> RR )
87 frn 5553 . . . . . . . . 9  |-  ( ( z  e.  X  |->  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) ) ) ) : X --> RR  ->  ran  ( z  e.  X  |->  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) ) ) )  C_  RR )
8886, 87syl 16 . . . . . . . 8  |-  ( (
ph  /\  F : X
--> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  ->  ran  ( z  e.  X  |->  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) ) ) )  C_  RR )
89 ax-resscn 9326 . . . . . . . . 9  |-  RR  C_  CC
9089a1i 11 . . . . . . . 8  |-  ( (
ph  /\  F : X
--> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  ->  RR  C_  CC )
91 cnrest2 18731 . . . . . . . 8  |-  ( ( ( TopOpen ` fld )  e.  (TopOn `  CC )  /\  ran  ( z  e.  X  |->  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) ) ) )  C_  RR  /\  RR  C_  CC )  ->  ( ( z  e.  X  |->  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `
 z ) ) ) )  e.  ( J  Cn  ( TopOpen ` fld )
)  <->  ( z  e.  X  |->  ( 1  / 
( sup ( ran 
F ,  RR ,  <  )  -  ( F `
 z ) ) ) )  e.  ( J  Cn  ( (
TopOpen ` fld )t  RR ) ) ) )
9211, 88, 90, 91syl3anc 1211 . . . . . . 7  |-  ( (
ph  /\  F : X
--> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  ->  (
( z  e.  X  |->  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) ) ) )  e.  ( J  Cn  ( TopOpen
` fld
) )  <->  ( z  e.  X  |->  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `
 z ) ) ) )  e.  ( J  Cn  ( (
TopOpen ` fld )t  RR ) ) ) )
9383, 92mpbid 210 . . . . . 6  |-  ( (
ph  /\  F : X
--> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  ->  (
z  e.  X  |->  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) ) ) )  e.  ( J  Cn  (
( TopOpen ` fld )t  RR ) ) )
9493, 49syl6eleqr 2524 . . . . 5  |-  ( (
ph  /\  F : X
--> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  ->  (
z  e.  X  |->  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) ) ) )  e.  ( J  Cn  K
) )
951, 2, 4, 94bndth 20371 . . . 4  |-  ( (
ph  /\  F : X
--> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  ->  E. x  e.  RR  A. y  e.  X  ( ( z  e.  X  |->  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `
 z ) ) ) ) `  y
)  <_  x )
9639ad2antrr 718 . . . . . . . 8  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  x  e.  RR )  ->  sup ( ran  F ,  RR ,  <  )  e.  RR )
97 simpr 458 . . . . . . . . . . 11  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  x  e.  RR )  ->  x  e.  RR )
98 1re 9372 . . . . . . . . . . 11  |-  1  e.  RR
99 ifcl 3819 . . . . . . . . . . 11  |-  ( ( x  e.  RR  /\  1  e.  RR )  ->  if ( 1  <_  x ,  x , 
1 )  e.  RR )
10097, 98, 99sylancl 655 . . . . . . . . . 10  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  x  e.  RR )  ->  if ( 1  <_  x ,  x , 
1 )  e.  RR )
101 0red 9374 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  x  e.  RR )  ->  0  e.  RR )
10298a1i 11 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  x  e.  RR )  ->  1  e.  RR )
103 0lt1 9849 . . . . . . . . . . . . 13  |-  0  <  1
104103a1i 11 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  x  e.  RR )  ->  0  <  1 )
105 max1 11144 . . . . . . . . . . . . 13  |-  ( ( 1  e.  RR  /\  x  e.  RR )  ->  1  <_  if (
1  <_  x ,  x ,  1 ) )
10698, 97, 105sylancr 656 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  x  e.  RR )  ->  1  <_  if (
1  <_  x ,  x ,  1 ) )
107101, 102, 100, 104, 106ltletrd 9518 . . . . . . . . . . 11  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  x  e.  RR )  ->  0  <  if ( 1  <_  x ,  x ,  1 ) )
108107gt0ne0d 9891 . . . . . . . . . 10  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  x  e.  RR )  ->  if ( 1  <_  x ,  x , 
1 )  =/=  0
)
109100, 108rereccld 10145 . . . . . . . . 9  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  x  e.  RR )  ->  ( 1  /  if ( 1  <_  x ,  x ,  1 ) )  e.  RR )
110100, 107recgt0d 10254 . . . . . . . . 9  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  x  e.  RR )  ->  0  <  ( 1  /  if ( 1  <_  x ,  x ,  1 ) ) )
111109, 110elrpd 11012 . . . . . . . 8  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  x  e.  RR )  ->  ( 1  /  if ( 1  <_  x ,  x ,  1 ) )  e.  RR+ )
11296, 111ltsubrpd 11042 . . . . . . 7  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  x  e.  RR )  ->  ( sup ( ran 
F ,  RR ,  <  )  -  ( 1  /  if ( 1  <_  x ,  x ,  1 ) ) )  <  sup ( ran  F ,  RR ,  <  ) )
11396, 109resubcld 9763 . . . . . . . 8  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  x  e.  RR )  ->  ( sup ( ran 
F ,  RR ,  <  )  -  ( 1  /  if ( 1  <_  x ,  x ,  1 ) ) )  e.  RR )
114113, 96ltnled 9508 . . . . . . 7  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  x  e.  RR )  ->  ( ( sup ( ran  F ,  RR ,  <  )  -  ( 1  /  if ( 1  <_  x ,  x ,  1 ) ) )  <  sup ( ran  F ,  RR ,  <  )  <->  -.  sup ( ran  F ,  RR ,  <  )  <_  ( sup ( ran  F ,  RR ,  <  )  -  (
1  /  if ( 1  <_  x ,  x ,  1 ) ) ) ) )
115112, 114mpbid 210 . . . . . 6  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  x  e.  RR )  ->  -.  sup ( ran 
F ,  RR ,  <  )  <_  ( sup ( ran  F ,  RR ,  <  )  -  (
1  /  if ( 1  <_  x ,  x ,  1 ) ) ) )
116 simprl 748 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  x  e.  RR )
117 max2 11146 . . . . . . . . . . . 12  |-  ( ( 1  e.  RR  /\  x  e.  RR )  ->  x  <_  if (
1  <_  x ,  x ,  1 ) )
11898, 116, 117sylancr 656 . . . . . . . . . . 11  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  x  <_  if ( 1  <_  x ,  x ,  1 ) )
11939ad2antrr 718 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  sup ( ran  F ,  RR ,  <  )  e.  RR )
120 ffvelrn 5829 . . . . . . . . . . . . . . . . 17  |-  ( ( F : X --> ( RR 
\  { sup ( ran  F ,  RR ,  <  ) } )  /\  y  e.  X )  ->  ( F `  y
)  e.  ( RR 
\  { sup ( ran  F ,  RR ,  <  ) } ) )
121120ad2ant2l 738 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  ( F `  y )  e.  ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )
122 eldifsn 3988 . . . . . . . . . . . . . . . 16  |-  ( ( F `  y )  e.  ( RR  \  { sup ( ran  F ,  RR ,  <  ) } )  <->  ( ( F `  y )  e.  RR  /\  ( F `
 y )  =/= 
sup ( ran  F ,  RR ,  <  )
) )
123121, 122sylib 196 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  ( ( F `  y )  e.  RR  /\  ( F `
 y )  =/= 
sup ( ran  F ,  RR ,  <  )
) )
124123simpld 456 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  ( F `  y )  e.  RR )
125119, 124resubcld 9763 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  y )
)  e.  RR )
12637adantr 462 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  y  e.  X )  ->  ( ran  F  C_  RR  /\  ran  F  =/=  (/)  /\  E. x  e.  RR  A. z  e. 
ran  F  z  <_  x ) )
127 fnfvelrn 5828 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F  Fn  X  /\  y  e.  X )  ->  ( F `  y
)  e.  ran  F
)
12831, 127sylan 468 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  y  e.  X )  ->  ( F `  y )  e.  ran  F )
129 suprub 10278 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ran  F  C_  RR  /\  ran  F  =/=  (/)  /\  E. x  e.  RR  A. z  e. 
ran  F  z  <_  x )  /\  ( F `
 y )  e. 
ran  F )  -> 
( F `  y
)  <_  sup ( ran  F ,  RR ,  <  ) )
130126, 128, 129syl2anc 654 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  y  e.  X )  ->  ( F `  y )  <_  sup ( ran  F ,  RR ,  <  )
)
131130ad2ant2rl 741 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  ( F `  y )  <_  sup ( ran  F ,  RR ,  <  ) )
132123simprd 460 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  ( F `  y )  =/=  sup ( ran  F ,  RR ,  <  ) )
133132necomd 2685 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  sup ( ran  F ,  RR ,  <  )  =/=  ( F `
 y ) )
134124, 119ltlend 9506 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  ( ( F `  y )  <  sup ( ran  F ,  RR ,  <  )  <->  ( ( F `  y
)  <_  sup ( ran  F ,  RR ,  <  )  /\  sup ( ran  F ,  RR ,  <  )  =/=  ( F `
 y ) ) ) )
135131, 133, 134mpbir2and 906 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  ( F `  y )  <  sup ( ran  F ,  RR ,  <  ) )
136124, 119posdifd 9913 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  ( ( F `  y )  <  sup ( ran  F ,  RR ,  <  )  <->  0  <  ( sup ( ran  F ,  RR ,  <  )  -  ( F `
 y ) ) ) )
137135, 136mpbid 210 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  0  <  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  y ) ) )
138137gt0ne0d 9891 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  y )
)  =/=  0 )
139125, 138rereccld 10145 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `
 y ) ) )  e.  RR )
140116, 98, 99sylancl 655 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  if (
1  <_  x ,  x ,  1 )  e.  RR )
141 letr 9455 . . . . . . . . . . . 12  |-  ( ( ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  y ) ) )  e.  RR  /\  x  e.  RR  /\  if ( 1  <_  x ,  x ,  1 )  e.  RR )  -> 
( ( ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `
 y ) ) )  <_  x  /\  x  <_  if ( 1  <_  x ,  x ,  1 ) )  ->  ( 1  / 
( sup ( ran 
F ,  RR ,  <  )  -  ( F `
 y ) ) )  <_  if (
1  <_  x ,  x ,  1 ) ) )
142139, 116, 140, 141syl3anc 1211 . . . . . . . . . . 11  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  ( (
( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  y ) ) )  <_  x  /\  x  <_  if ( 1  <_  x ,  x ,  1 ) )  ->  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `
 y ) ) )  <_  if (
1  <_  x ,  x ,  1 ) ) )
143118, 142mpan2d 667 . . . . . . . . . 10  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  ( (
1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  y ) ) )  <_  x  ->  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  y ) ) )  <_  if ( 1  <_  x ,  x ,  1 ) ) )
144 fveq2 5679 . . . . . . . . . . . . . . 15  |-  ( z  =  y  ->  ( F `  z )  =  ( F `  y ) )
145144oveq2d 6096 . . . . . . . . . . . . . 14  |-  ( z  =  y  ->  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) )  =  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  y ) ) )
146145oveq2d 6096 . . . . . . . . . . . . 13  |-  ( z  =  y  ->  (
1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) ) )  =  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  y ) ) ) )
147 ovex 6105 . . . . . . . . . . . . 13  |-  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `
 y ) ) )  e.  _V
148146, 85, 147fvmpt 5762 . . . . . . . . . . . 12  |-  ( y  e.  X  ->  (
( z  e.  X  |->  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) ) ) ) `  y )  =  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  y ) ) ) )
149148breq1d 4290 . . . . . . . . . . 11  |-  ( y  e.  X  ->  (
( ( z  e.  X  |->  ( 1  / 
( sup ( ran 
F ,  RR ,  <  )  -  ( F `
 z ) ) ) ) `  y
)  <_  x  <->  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `
 y ) ) )  <_  x )
)
150149ad2antll 721 . . . . . . . . . 10  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  ( (
( z  e.  X  |->  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) ) ) ) `  y )  <_  x  <->  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  y ) ) )  <_  x
) )
151109adantrr 709 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  ( 1  /  if ( 1  <_  x ,  x ,  1 ) )  e.  RR )
152107adantrr 709 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  0  <  if ( 1  <_  x ,  x ,  1 ) )
153140, 152recgt0d 10254 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  0  <  ( 1  /  if ( 1  <_  x ,  x ,  1 ) ) )
154 lerec 10201 . . . . . . . . . . . 12  |-  ( ( ( ( 1  /  if ( 1  <_  x ,  x ,  1 ) )  e.  RR  /\  0  <  ( 1  /  if ( 1  <_  x ,  x ,  1 ) ) )  /\  (
( sup ( ran 
F ,  RR ,  <  )  -  ( F `
 y ) )  e.  RR  /\  0  <  ( sup ( ran 
F ,  RR ,  <  )  -  ( F `
 y ) ) ) )  ->  (
( 1  /  if ( 1  <_  x ,  x ,  1 ) )  <_  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  y )
)  <->  ( 1  / 
( sup ( ran 
F ,  RR ,  <  )  -  ( F `
 y ) ) )  <_  ( 1  /  ( 1  /  if ( 1  <_  x ,  x ,  1 ) ) ) ) )
155151, 153, 125, 137, 154syl22anc 1212 . . . . . . . . . . 11  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  ( (
1  /  if ( 1  <_  x ,  x ,  1 ) )  <_  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  y )
)  <->  ( 1  / 
( sup ( ran 
F ,  RR ,  <  )  -  ( F `
 y ) ) )  <_  ( 1  /  ( 1  /  if ( 1  <_  x ,  x ,  1 ) ) ) ) )
156 lesub 9805 . . . . . . . . . . . 12  |-  ( ( ( 1  /  if ( 1  <_  x ,  x ,  1 ) )  e.  RR  /\  sup ( ran  F ,  RR ,  <  )  e.  RR  /\  ( F `
 y )  e.  RR )  ->  (
( 1  /  if ( 1  <_  x ,  x ,  1 ) )  <_  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  y )
)  <->  ( F `  y )  <_  ( sup ( ran  F ,  RR ,  <  )  -  ( 1  /  if ( 1  <_  x ,  x ,  1 ) ) ) ) )
157151, 119, 124, 156syl3anc 1211 . . . . . . . . . . 11  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  ( (
1  /  if ( 1  <_  x ,  x ,  1 ) )  <_  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  y )
)  <->  ( F `  y )  <_  ( sup ( ran  F ,  RR ,  <  )  -  ( 1  /  if ( 1  <_  x ,  x ,  1 ) ) ) ) )
158140recnd 9399 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  if (
1  <_  x ,  x ,  1 )  e.  CC )
159108adantrr 709 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  if (
1  <_  x ,  x ,  1 )  =/=  0 )
160158, 159recrecd 10091 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  ( 1  /  ( 1  /  if ( 1  <_  x ,  x ,  1 ) ) )  =  if ( 1  <_  x ,  x ,  1 ) )
161160breq2d 4292 . . . . . . . . . . 11  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  ( (
1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  y ) ) )  <_  (
1  /  ( 1  /  if ( 1  <_  x ,  x ,  1 ) ) )  <->  ( 1  / 
( sup ( ran 
F ,  RR ,  <  )  -  ( F `
 y ) ) )  <_  if (
1  <_  x ,  x ,  1 ) ) )
162155, 157, 1613bitr3d 283 . . . . . . . . . 10  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  ( ( F `  y )  <_  ( sup ( ran 
F ,  RR ,  <  )  -  ( 1  /  if ( 1  <_  x ,  x ,  1 ) ) )  <->  ( 1  / 
( sup ( ran 
F ,  RR ,  <  )  -  ( F `
 y ) ) )  <_  if (
1  <_  x ,  x ,  1 ) ) )
163143, 150, 1623imtr4d 268 . . . . . . . . 9  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  ( (
( z  e.  X  |->  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) ) ) ) `  y )  <_  x  ->  ( F `  y
)  <_  ( sup ( ran  F ,  RR ,  <  )  -  (
1  /  if ( 1  <_  x ,  x ,  1 ) ) ) ) )
164163anassrs 641 . . . . . . . 8  |-  ( ( ( ( ph  /\  F : X --> ( RR 
\  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  x  e.  RR )  /\  y  e.  X
)  ->  ( (
( z  e.  X  |->  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) ) ) ) `  y )  <_  x  ->  ( F `  y
)  <_  ( sup ( ran  F ,  RR ,  <  )  -  (
1  /  if ( 1  <_  x ,  x ,  1 ) ) ) ) )
165164ralimdva 2784 . . . . . . 7  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  x  e.  RR )  ->  ( A. y  e.  X  ( ( z  e.  X  |->  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `
 z ) ) ) ) `  y
)  <_  x  ->  A. y  e.  X  ( F `  y )  <_  ( sup ( ran  F ,  RR ,  <  )  -  ( 1  /  if ( 1  <_  x ,  x ,  1 ) ) ) ) )
16637ad2antrr 718 . . . . . . . . 9  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  x  e.  RR )  ->  ( ran  F  C_  RR  /\  ran  F  =/=  (/)  /\  E. x  e.  RR  A. z  e. 
ran  F  z  <_  x ) )
167 suprleub 10281 . . . . . . . . 9  |-  ( ( ( ran  F  C_  RR  /\  ran  F  =/=  (/)  /\  E. x  e.  RR  A. z  e. 
ran  F  z  <_  x )  /\  ( sup ( ran  F ,  RR ,  <  )  -  ( 1  /  if ( 1  <_  x ,  x ,  1 ) ) )  e.  RR )  ->  ( sup ( ran  F ,  RR ,  <  )  <_  ( sup ( ran  F ,  RR ,  <  )  -  (
1  /  if ( 1  <_  x ,  x ,  1 ) ) )  <->  A. z  e.  ran  F  z  <_ 
( sup ( ran 
F ,  RR ,  <  )  -  ( 1  /  if ( 1  <_  x ,  x ,  1 ) ) ) ) )
168166, 113, 167syl2anc 654 . . . . . . . 8  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  x  e.  RR )  ->  ( sup ( ran 
F ,  RR ,  <  )  <_  ( sup ( ran  F ,  RR ,  <  )  -  (
1  /  if ( 1  <_  x ,  x ,  1 ) ) )  <->  A. z  e.  ran  F  z  <_ 
( sup ( ran 
F ,  RR ,  <  )  -  ( 1  /  if ( 1  <_  x ,  x ,  1 ) ) ) ) )
16931ad2antrr 718 . . . . . . . . 9  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  x  e.  RR )  ->  F  Fn  X )
170 breq1 4283 . . . . . . . . . 10  |-  ( z  =  ( F `  y )  ->  (
z  <_  ( sup ( ran  F ,  RR ,  <  )  -  (
1  /  if ( 1  <_  x ,  x ,  1 ) ) )  <->  ( F `  y )  <_  ( sup ( ran  F ,  RR ,  <  )  -  ( 1  /  if ( 1  <_  x ,  x ,  1 ) ) ) ) )
171170ralrn 5834 . . . . . . . . 9  |-  ( F  Fn  X  ->  ( A. z  e.  ran  F  z  <_  ( sup ( ran  F ,  RR ,  <  )  -  (
1  /  if ( 1  <_  x ,  x ,  1 ) ) )  <->  A. y  e.  X  ( F `  y )  <_  ( sup ( ran  F ,  RR ,  <  )  -  ( 1  /  if ( 1  <_  x ,  x ,  1 ) ) ) ) )
172169, 171syl 16 . . . . . . . 8  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  x  e.  RR )  ->  ( A. z  e. 
ran  F  z  <_  ( sup ( ran  F ,  RR ,  <  )  -  ( 1  /  if ( 1  <_  x ,  x ,  1 ) ) )  <->  A. y  e.  X  ( F `  y )  <_  ( sup ( ran  F ,  RR ,  <  )  -  ( 1  /  if ( 1  <_  x ,  x ,  1 ) ) ) ) )
173168, 172bitrd 253 . . . . . . 7  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  x  e.  RR )  ->  ( sup ( ran 
F ,  RR ,  <  )  <_  ( sup ( ran  F ,  RR ,  <  )  -  (
1  /  if ( 1  <_  x ,  x ,  1 ) ) )  <->  A. y  e.  X  ( F `  y )  <_  ( sup ( ran  F ,  RR ,  <  )  -  ( 1  /  if ( 1  <_  x ,  x ,  1 ) ) ) ) )
174165, 173sylibrd 234 . . . . . 6  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  x  e.  RR )  ->  ( A. y  e.  X  ( ( z  e.  X  |->  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `
 z ) ) ) ) `  y
)  <_  x  ->  sup ( ran  F ,  RR ,  <  )  <_ 
( sup ( ran 
F ,  RR ,  <  )  -  ( 1  /  if ( 1  <_  x ,  x ,  1 ) ) ) ) )
175115, 174mtod 177 . . . . 5  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  x  e.  RR )  ->  -.  A. y  e.  X  ( ( z  e.  X  |->  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `
 z ) ) ) ) `  y
)  <_  x )
176175nrexdv 2809 . . . 4  |-  ( (
ph  /\  F : X
--> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  ->  -.  E. x  e.  RR  A. y  e.  X  (
( z  e.  X  |->  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) ) ) ) `  y )  <_  x
)
17795, 176pm2.65da 571 . . 3  |-  ( ph  ->  -.  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )
178130ralrimiva 2789 . . . . . . . . 9  |-  ( ph  ->  A. y  e.  X  ( F `  y )  <_  sup ( ran  F ,  RR ,  <  )
)
179 breq2 4284 . . . . . . . . . 10  |-  ( ( F `  x )  =  sup ( ran 
F ,  RR ,  <  )  ->  ( ( F `  y )  <_  ( F `  x
)  <->  ( F `  y )  <_  sup ( ran  F ,  RR ,  <  ) ) )
180179ralbidv 2725 . . . . . . . . 9  |-  ( ( F `  x )  =  sup ( ran 
F ,  RR ,  <  )  ->  ( A. y  e.  X  ( F `  y )  <_  ( F `  x
)  <->  A. y  e.  X  ( F `  y )  <_  sup ( ran  F ,  RR ,  <  )
) )
181178, 180syl5ibrcom 222 . . . . . . . 8  |-  ( ph  ->  ( ( F `  x )  =  sup ( ran  F ,  RR ,  <  )  ->  A. y  e.  X  ( F `  y )  <_  ( F `  x )
) )
182181necon3bd 2635 . . . . . . 7  |-  ( ph  ->  ( -.  A. y  e.  X  ( F `  y )  <_  ( F `  x )  ->  ( F `  x
)  =/=  sup ( ran  F ,  RR ,  <  ) ) )
183182adantr 462 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  ( -.  A. y  e.  X  ( F `  y )  <_  ( F `  x )  ->  ( F `  x )  =/=  sup ( ran  F ,  RR ,  <  )
) )
18419ffvelrnda 5831 . . . . . . 7  |-  ( (
ph  /\  x  e.  X )  ->  ( F `  x )  e.  RR )
185 eldifsn 3988 . . . . . . . 8  |-  ( ( F `  x )  e.  ( RR  \  { sup ( ran  F ,  RR ,  <  ) } )  <->  ( ( F `  x )  e.  RR  /\  ( F `
 x )  =/= 
sup ( ran  F ,  RR ,  <  )
) )
186185baib 889 . . . . . . 7  |-  ( ( F `  x )  e.  RR  ->  (
( F `  x
)  e.  ( RR 
\  { sup ( ran  F ,  RR ,  <  ) } )  <->  ( F `  x )  =/=  sup ( ran  F ,  RR ,  <  ) ) )
187184, 186syl 16 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  (
( F `  x
)  e.  ( RR 
\  { sup ( ran  F ,  RR ,  <  ) } )  <->  ( F `  x )  =/=  sup ( ran  F ,  RR ,  <  ) ) )
188183, 187sylibrd 234 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  ( -.  A. y  e.  X  ( F `  y )  <_  ( F `  x )  ->  ( F `  x )  e.  ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) ) )
189188ralimdva 2784 . . . 4  |-  ( ph  ->  ( A. x  e.  X  -.  A. y  e.  X  ( F `  y )  <_  ( F `  x )  ->  A. x  e.  X  ( F `  x )  e.  ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) ) )
190 ffnfv 5856 . . . . . 6  |-  ( F : X --> ( RR 
\  { sup ( ran  F ,  RR ,  <  ) } )  <->  ( F  Fn  X  /\  A. x  e.  X  ( F `  x )  e.  ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) ) )
191190baib 889 . . . . 5  |-  ( F  Fn  X  ->  ( F : X --> ( RR 
\  { sup ( ran  F ,  RR ,  <  ) } )  <->  A. x  e.  X  ( F `  x )  e.  ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) ) )
19231, 191syl 16 . . . 4  |-  ( ph  ->  ( F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } )  <->  A. x  e.  X  ( F `  x )  e.  ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) ) )
193189, 192sylibrd 234 . . 3  |-  ( ph  ->  ( A. x  e.  X  -.  A. y  e.  X  ( F `  y )  <_  ( F `  x )  ->  F : X --> ( RR 
\  { sup ( ran  F ,  RR ,  <  ) } ) ) )
194177, 193mtod 177 . 2  |-  ( ph  ->  -.  A. x  e.  X  -.  A. y  e.  X  ( F `  y )  <_  ( F `  x )
)
195 dfrex2 2718 . 2  |-  ( E. x  e.  X  A. y  e.  X  ( F `  y )  <_  ( F `  x
)  <->  -.  A. x  e.  X  -.  A. y  e.  X  ( F `  y )  <_  ( F `  x )
)
196194, 195sylibr 212 1  |-  ( ph  ->  E. x  e.  X  A. y  e.  X  ( F `  y )  <_  ( F `  x ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 958    = wceq 1362    e. wcel 1755    =/= wne 2596   A.wral 2705   E.wrex 2706    \ cdif 3313    C_ wss 3316   (/)c0 3625   ifcif 3779   {csn 3865   U.cuni 4079   class class class wbr 4280    e. cmpt 4338   dom cdm 4827   ran crn 4828    Fn wfn 5401   -->wf 5402   ` cfv 5406  (class class class)co 6080   supcsup 7678   CCcc 9267   RRcr 9268   0cc0 9269   1c1 9270    < clt 9405    <_ cle 9406    - cmin 9582    / cdiv 9980   (,)cioo 11287   ↾t crest 14341   TopOpenctopn 14342   topGenctg 14358  ℂfldccnfld 17661   Topctop 18339  TopOnctopon 18340    Cn ccn 18669   Compccmp 18830    tX ctx 18974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-rep 4391  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-inf2 7835  ax-cnex 9325  ax-resscn 9326  ax-1cn 9327  ax-icn 9328  ax-addcl 9329  ax-addrcl 9330  ax-mulcl 9331  ax-mulrcl 9332  ax-mulcom 9333  ax-addass 9334  ax-mulass 9335  ax-distr 9336  ax-i2m1 9337  ax-1ne0 9338  ax-1rid 9339  ax-rnegex 9340  ax-rrecex 9341  ax-cnre 9342  ax-pre-lttri 9343  ax-pre-lttrn 9344  ax-pre-ltadd 9345  ax-pre-mulgt0 9346  ax-pre-sup 9347  ax-mulf 9349
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-uni 4080  df-int 4117  df-iun 4161  df-iin 4162  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-se 4667  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-isom 5415  df-riota 6039  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-of 6309  df-om 6466  df-1st 6566  df-2nd 6567  df-supp 6680  df-recs 6818  df-rdg 6852  df-1o 6908  df-2o 6909  df-oadd 6912  df-er 7089  df-map 7204  df-ixp 7252  df-en 7299  df-dom 7300  df-sdom 7301  df-fin 7302  df-fsupp 7609  df-fi 7649  df-sup 7679  df-oi 7712  df-card 8097  df-cda 8325  df-pnf 9407  df-mnf 9408  df-xr 9409  df-ltxr 9410  df-le 9411  df-sub 9584  df-neg 9585  df-div 9981  df-nn 10310  df-2 10367  df-3 10368  df-4 10369  df-5 10370  df-6 10371  df-7 10372  df-8 10373  df-9 10374  df-10 10375  df-n0 10567  df-z 10634  df-dec 10743  df-uz 10849  df-q 10941  df-rp 10979  df-xneg 11076  df-xadd 11077  df-xmul 11078  df-ioo 11291  df-icc 11294  df-fz 11424  df-fzo 11532  df-seq 11790  df-exp 11849  df-hash 12087  df-cj 12571  df-re 12572  df-im 12573  df-sqr 12707  df-abs 12708  df-struct 14158  df-ndx 14159  df-slot 14160  df-base 14161  df-sets 14162  df-ress 14163  df-plusg 14233  df-mulr 14234  df-starv 14235  df-sca 14236  df-vsca 14237  df-ip 14238  df-tset 14239  df-ple 14240  df-ds 14242  df-unif 14243  df-hom 14244  df-cco 14245  df-rest 14343  df-topn 14344  df-0g 14362  df-gsum 14363  df-topgen 14364  df-pt 14365  df-prds 14368  df-xrs 14422  df-qtop 14427  df-imas 14428  df-xps 14430  df-mre 14506  df-mrc 14507  df-acs 14509  df-mnd 15397  df-submnd 15447  df-mulg 15527  df-cntz 15814  df-cmn 16258  df-psmet 17652  df-xmet 17653  df-met 17654  df-bl 17655  df-mopn 17656  df-cnfld 17662  df-top 18344  df-bases 18346  df-topon 18347  df-topsp 18348  df-cn 18672  df-cnp 18673  df-cmp 18831  df-tx 18976  df-hmeo 19169  df-xms 19736  df-ms 19737  df-tms 19738
This theorem is referenced by:  evth2  20373  evthicc  20784  evthf  29591  cncmpmax  29596
  Copyright terms: Public domain W3C validator