MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evth Structured version   Unicode version

Theorem evth 20662
Description: The Extreme Value Theorem. A continuous function from a nonempty compact topological space to the reals attains its maximum at some point in the domain. (Contributed by Mario Carneiro, 12-Aug-2014.)
Hypotheses
Ref Expression
bndth.1  |-  X  = 
U. J
bndth.2  |-  K  =  ( topGen `  ran  (,) )
bndth.3  |-  ( ph  ->  J  e.  Comp )
bndth.4  |-  ( ph  ->  F  e.  ( J  Cn  K ) )
evth.5  |-  ( ph  ->  X  =/=  (/) )
Assertion
Ref Expression
evth  |-  ( ph  ->  E. x  e.  X  A. y  e.  X  ( F `  y )  <_  ( F `  x ) )
Distinct variable groups:    x, y, F    y, K    ph, x, y   
x, X, y    x, J, y
Allowed substitution hint:    K( x)

Proof of Theorem evth
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 bndth.1 . . . . 5  |-  X  = 
U. J
2 bndth.2 . . . . 5  |-  K  =  ( topGen `  ran  (,) )
3 bndth.3 . . . . . 6  |-  ( ph  ->  J  e.  Comp )
43adantr 465 . . . . 5  |-  ( (
ph  /\  F : X
--> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  ->  J  e.  Comp )
5 cmptop 19129 . . . . . . . . . 10  |-  ( J  e.  Comp  ->  J  e. 
Top )
64, 5syl 16 . . . . . . . . 9  |-  ( (
ph  /\  F : X
--> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  ->  J  e.  Top )
71toptopon 18669 . . . . . . . . 9  |-  ( J  e.  Top  <->  J  e.  (TopOn `  X ) )
86, 7sylib 196 . . . . . . . 8  |-  ( (
ph  /\  F : X
--> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  ->  J  e.  (TopOn `  X )
)
9 eqid 2454 . . . . . . . . . . 11  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
109cnfldtopon 20493 . . . . . . . . . 10  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
1110a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  F : X
--> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  ->  ( TopOpen
` fld
)  e.  (TopOn `  CC ) )
12 1cnd 9512 . . . . . . . . 9  |-  ( (
ph  /\  F : X
--> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  ->  1  e.  CC )
138, 11, 12cnmptc 19366 . . . . . . . 8  |-  ( (
ph  /\  F : X
--> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  ->  (
z  e.  X  |->  1 )  e.  ( J  Cn  ( TopOpen ` fld ) ) )
14 bndth.4 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  F  e.  ( J  Cn  K ) )
15 uniretop 20472 . . . . . . . . . . . . . . . . . . 19  |-  RR  =  U. ( topGen `  ran  (,) )
162unieqi 4207 . . . . . . . . . . . . . . . . . . 19  |-  U. K  =  U. ( topGen `  ran  (,) )
1715, 16eqtr4i 2486 . . . . . . . . . . . . . . . . . 18  |-  RR  =  U. K
181, 17cnf 18981 . . . . . . . . . . . . . . . . 17  |-  ( F  e.  ( J  Cn  K )  ->  F : X --> RR )
1914, 18syl 16 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  F : X --> RR )
20 frn 5672 . . . . . . . . . . . . . . . 16  |-  ( F : X --> RR  ->  ran 
F  C_  RR )
2119, 20syl 16 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ran  F  C_  RR )
22 fdm 5670 . . . . . . . . . . . . . . . . . 18  |-  ( F : X --> RR  ->  dom 
F  =  X )
2319, 22syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  dom  F  =  X )
24 evth.5 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  X  =/=  (/) )
2523, 24eqnetrd 2744 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  dom  F  =/=  (/) )
26 dm0rn0 5163 . . . . . . . . . . . . . . . . 17  |-  ( dom 
F  =  (/)  <->  ran  F  =  (/) )
2726necon3bii 2719 . . . . . . . . . . . . . . . 16  |-  ( dom 
F  =/=  (/)  <->  ran  F  =/=  (/) )
2825, 27sylib 196 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ran  F  =/=  (/) )
291, 2, 3, 14bndth 20661 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  E. x  e.  RR  A. y  e.  X  ( F `  y )  <_  x )
30 ffn 5666 . . . . . . . . . . . . . . . . . . 19  |-  ( F : X --> RR  ->  F  Fn  X )
3119, 30syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  F  Fn  X )
32 breq1 4402 . . . . . . . . . . . . . . . . . . 19  |-  ( z  =  ( F `  y )  ->  (
z  <_  x  <->  ( F `  y )  <_  x
) )
3332ralrn 5954 . . . . . . . . . . . . . . . . . 18  |-  ( F  Fn  X  ->  ( A. z  e.  ran  F  z  <_  x  <->  A. y  e.  X  ( F `  y )  <_  x
) )
3431, 33syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( A. z  e. 
ran  F  z  <_  x  <->  A. y  e.  X  ( F `  y )  <_  x ) )
3534rexbidv 2864 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( E. x  e.  RR  A. z  e. 
ran  F  z  <_  x  <->  E. x  e.  RR  A. y  e.  X  ( F `  y )  <_  x ) )
3629, 35mpbird 232 . . . . . . . . . . . . . . 15  |-  ( ph  ->  E. x  e.  RR  A. z  e.  ran  F  z  <_  x )
3721, 28, 363jca 1168 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ran  F  C_  RR  /\  ran  F  =/=  (/)  /\  E. x  e.  RR  A. z  e. 
ran  F  z  <_  x ) )
38 suprcl 10400 . . . . . . . . . . . . . 14  |-  ( ( ran  F  C_  RR  /\ 
ran  F  =/=  (/)  /\  E. x  e.  RR  A. z  e.  ran  F  z  <_  x )  ->  sup ( ran  F ,  RR ,  <  )  e.  RR )
3937, 38syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  sup ( ran  F ,  RR ,  <  )  e.  RR )
4039recnd 9522 . . . . . . . . . . . 12  |-  ( ph  ->  sup ( ran  F ,  RR ,  <  )  e.  CC )
4140adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  F : X
--> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  ->  sup ( ran  F ,  RR ,  <  )  e.  CC )
428, 11, 41cnmptc 19366 . . . . . . . . . 10  |-  ( (
ph  /\  F : X
--> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  ->  (
z  e.  X  |->  sup ( ran  F ,  RR ,  <  ) )  e.  ( J  Cn  ( TopOpen ` fld ) ) )
4319feqmptd 5852 . . . . . . . . . . . 12  |-  ( ph  ->  F  =  ( z  e.  X  |->  ( F `
 z ) ) )
449cnfldtop 20494 . . . . . . . . . . . . . 14  |-  ( TopOpen ` fld )  e.  Top
45 cnrest2r 19022 . . . . . . . . . . . . . 14  |-  ( (
TopOpen ` fld )  e.  Top  ->  ( J  Cn  ( (
TopOpen ` fld )t  RR ) )  C_  ( J  Cn  ( TopOpen
` fld
) ) )
4644, 45ax-mp 5 . . . . . . . . . . . . 13  |-  ( J  Cn  ( ( TopOpen ` fld )t  RR ) )  C_  ( J  Cn  ( TopOpen ` fld ) )
479tgioo2 20511 . . . . . . . . . . . . . . . 16  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
482, 47eqtri 2483 . . . . . . . . . . . . . . 15  |-  K  =  ( ( TopOpen ` fld )t  RR )
4948oveq2i 6210 . . . . . . . . . . . . . 14  |-  ( J  Cn  K )  =  ( J  Cn  (
( TopOpen ` fld )t  RR ) )
5014, 49syl6eleq 2552 . . . . . . . . . . . . 13  |-  ( ph  ->  F  e.  ( J  Cn  ( ( TopOpen ` fld )t  RR ) ) )
5146, 50sseldi 3461 . . . . . . . . . . . 12  |-  ( ph  ->  F  e.  ( J  Cn  ( TopOpen ` fld ) ) )
5243, 51eqeltrrd 2543 . . . . . . . . . . 11  |-  ( ph  ->  ( z  e.  X  |->  ( F `  z
) )  e.  ( J  Cn  ( TopOpen ` fld )
) )
5352adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  F : X
--> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  ->  (
z  e.  X  |->  ( F `  z ) )  e.  ( J  Cn  ( TopOpen ` fld ) ) )
549subcn 20573 . . . . . . . . . . 11  |-  -  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) )
5554a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  F : X
--> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  ->  -  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) ) )
568, 42, 53, 55cnmpt12f 19370 . . . . . . . . 9  |-  ( (
ph  /\  F : X
--> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  ->  (
z  e.  X  |->  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) ) )  e.  ( J  Cn  ( TopOpen ` fld ) ) )
5739ad2antrr 725 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  z  e.  X )  ->  sup ( ran  F ,  RR ,  <  )  e.  RR )
58 ffvelrn 5949 . . . . . . . . . . . . . . . . . 18  |-  ( ( F : X --> ( RR 
\  { sup ( ran  F ,  RR ,  <  ) } )  /\  z  e.  X )  ->  ( F `  z
)  e.  ( RR 
\  { sup ( ran  F ,  RR ,  <  ) } ) )
5958adantll 713 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  z  e.  X )  ->  ( F `  z
)  e.  ( RR 
\  { sup ( ran  F ,  RR ,  <  ) } ) )
60 eldifsn 4107 . . . . . . . . . . . . . . . . 17  |-  ( ( F `  z )  e.  ( RR  \  { sup ( ran  F ,  RR ,  <  ) } )  <->  ( ( F `  z )  e.  RR  /\  ( F `
 z )  =/= 
sup ( ran  F ,  RR ,  <  )
) )
6159, 60sylib 196 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  z  e.  X )  ->  ( ( F `  z )  e.  RR  /\  ( F `  z
)  =/=  sup ( ran  F ,  RR ,  <  ) ) )
6261simpld 459 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  z  e.  X )  ->  ( F `  z
)  e.  RR )
6357, 62resubcld 9886 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  z  e.  X )  ->  ( sup ( ran 
F ,  RR ,  <  )  -  ( F `
 z ) )  e.  RR )
6463recnd 9522 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  z  e.  X )  ->  ( sup ( ran 
F ,  RR ,  <  )  -  ( F `
 z ) )  e.  CC )
6557recnd 9522 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  z  e.  X )  ->  sup ( ran  F ,  RR ,  <  )  e.  CC )
6662recnd 9522 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  z  e.  X )  ->  ( F `  z
)  e.  CC )
6761simprd 463 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  z  e.  X )  ->  ( F `  z
)  =/=  sup ( ran  F ,  RR ,  <  ) )
6867necomd 2722 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  z  e.  X )  ->  sup ( ran  F ,  RR ,  <  )  =/=  ( F `  z
) )
6965, 66, 68subne0d 9838 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  z  e.  X )  ->  ( sup ( ran 
F ,  RR ,  <  )  -  ( F `
 z ) )  =/=  0 )
70 eldifsn 4107 . . . . . . . . . . . . 13  |-  ( ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) )  e.  ( CC  \  {
0 } )  <->  ( ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) )  e.  CC  /\  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) )  =/=  0 ) )
7164, 69, 70sylanbrc 664 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  z  e.  X )  ->  ( sup ( ran 
F ,  RR ,  <  )  -  ( F `
 z ) )  e.  ( CC  \  { 0 } ) )
72 eqid 2454 . . . . . . . . . . . 12  |-  ( z  e.  X  |->  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) ) )  =  ( z  e.  X  |->  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) ) )
7371, 72fmptd 5975 . . . . . . . . . . 11  |-  ( (
ph  /\  F : X
--> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  ->  (
z  e.  X  |->  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) ) ) : X --> ( CC 
\  { 0 } ) )
74 frn 5672 . . . . . . . . . . 11  |-  ( ( z  e.  X  |->  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) ) ) : X --> ( CC 
\  { 0 } )  ->  ran  ( z  e.  X  |->  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) ) )  C_  ( CC  \  { 0 } ) )
7573, 74syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  F : X
--> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  ->  ran  ( z  e.  X  |->  ( sup ( ran 
F ,  RR ,  <  )  -  ( F `
 z ) ) )  C_  ( CC  \  { 0 } ) )
76 difssd 3591 . . . . . . . . . 10  |-  ( (
ph  /\  F : X
--> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  ->  ( CC  \  { 0 } )  C_  CC )
77 cnrest2 19021 . . . . . . . . . 10  |-  ( ( ( TopOpen ` fld )  e.  (TopOn `  CC )  /\  ran  ( z  e.  X  |->  ( sup ( ran 
F ,  RR ,  <  )  -  ( F `
 z ) ) )  C_  ( CC  \  { 0 } )  /\  ( CC  \  { 0 } ) 
C_  CC )  -> 
( ( z  e.  X  |->  ( sup ( ran  F ,  RR ,  <  )  -  ( F `
 z ) ) )  e.  ( J  Cn  ( TopOpen ` fld ) )  <->  ( z  e.  X  |->  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) ) )  e.  ( J  Cn  ( (
TopOpen ` fld )t  ( CC  \  {
0 } ) ) ) ) )
7811, 75, 76, 77syl3anc 1219 . . . . . . . . 9  |-  ( (
ph  /\  F : X
--> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  ->  (
( z  e.  X  |->  ( sup ( ran 
F ,  RR ,  <  )  -  ( F `
 z ) ) )  e.  ( J  Cn  ( TopOpen ` fld ) )  <->  ( z  e.  X  |->  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) ) )  e.  ( J  Cn  ( (
TopOpen ` fld )t  ( CC  \  {
0 } ) ) ) ) )
7956, 78mpbid 210 . . . . . . . 8  |-  ( (
ph  /\  F : X
--> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  ->  (
z  e.  X  |->  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) ) )  e.  ( J  Cn  ( ( TopOpen ` fld )t  ( CC  \  { 0 } ) ) ) )
80 eqid 2454 . . . . . . . . . 10  |-  ( (
TopOpen ` fld )t  ( CC  \  {
0 } ) )  =  ( ( TopOpen ` fld )t  ( CC  \  { 0 } ) )
819, 80divcn 20575 . . . . . . . . 9  |-  /  e.  ( ( ( TopOpen ` fld )  tX  ( ( TopOpen ` fld )t  ( CC  \  { 0 } ) ) )  Cn  ( TopOpen
` fld
) )
8281a1i 11 . . . . . . . 8  |-  ( (
ph  /\  F : X
--> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  ->  /  e.  ( ( ( TopOpen ` fld )  tX  ( ( TopOpen ` fld )t  ( CC  \  { 0 } ) ) )  Cn  ( TopOpen
` fld
) ) )
838, 13, 79, 82cnmpt12f 19370 . . . . . . 7  |-  ( (
ph  /\  F : X
--> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  ->  (
z  e.  X  |->  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) ) ) )  e.  ( J  Cn  ( TopOpen
` fld
) ) )
8463, 69rereccld 10268 . . . . . . . . . 10  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  z  e.  X )  ->  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) ) )  e.  RR )
85 eqid 2454 . . . . . . . . . 10  |-  ( z  e.  X  |->  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `
 z ) ) ) )  =  ( z  e.  X  |->  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) ) ) )
8684, 85fmptd 5975 . . . . . . . . 9  |-  ( (
ph  /\  F : X
--> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  ->  (
z  e.  X  |->  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) ) ) ) : X --> RR )
87 frn 5672 . . . . . . . . 9  |-  ( ( z  e.  X  |->  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) ) ) ) : X --> RR  ->  ran  ( z  e.  X  |->  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) ) ) )  C_  RR )
8886, 87syl 16 . . . . . . . 8  |-  ( (
ph  /\  F : X
--> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  ->  ran  ( z  e.  X  |->  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) ) ) )  C_  RR )
89 ax-resscn 9449 . . . . . . . . 9  |-  RR  C_  CC
9089a1i 11 . . . . . . . 8  |-  ( (
ph  /\  F : X
--> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  ->  RR  C_  CC )
91 cnrest2 19021 . . . . . . . 8  |-  ( ( ( TopOpen ` fld )  e.  (TopOn `  CC )  /\  ran  ( z  e.  X  |->  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) ) ) )  C_  RR  /\  RR  C_  CC )  ->  ( ( z  e.  X  |->  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `
 z ) ) ) )  e.  ( J  Cn  ( TopOpen ` fld )
)  <->  ( z  e.  X  |->  ( 1  / 
( sup ( ran 
F ,  RR ,  <  )  -  ( F `
 z ) ) ) )  e.  ( J  Cn  ( (
TopOpen ` fld )t  RR ) ) ) )
9211, 88, 90, 91syl3anc 1219 . . . . . . 7  |-  ( (
ph  /\  F : X
--> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  ->  (
( z  e.  X  |->  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) ) ) )  e.  ( J  Cn  ( TopOpen
` fld
) )  <->  ( z  e.  X  |->  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `
 z ) ) ) )  e.  ( J  Cn  ( (
TopOpen ` fld )t  RR ) ) ) )
9383, 92mpbid 210 . . . . . 6  |-  ( (
ph  /\  F : X
--> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  ->  (
z  e.  X  |->  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) ) ) )  e.  ( J  Cn  (
( TopOpen ` fld )t  RR ) ) )
9493, 49syl6eleqr 2553 . . . . 5  |-  ( (
ph  /\  F : X
--> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  ->  (
z  e.  X  |->  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) ) ) )  e.  ( J  Cn  K
) )
951, 2, 4, 94bndth 20661 . . . 4  |-  ( (
ph  /\  F : X
--> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  ->  E. x  e.  RR  A. y  e.  X  ( ( z  e.  X  |->  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `
 z ) ) ) ) `  y
)  <_  x )
9639ad2antrr 725 . . . . . . . 8  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  x  e.  RR )  ->  sup ( ran  F ,  RR ,  <  )  e.  RR )
97 simpr 461 . . . . . . . . . . 11  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  x  e.  RR )  ->  x  e.  RR )
98 1re 9495 . . . . . . . . . . 11  |-  1  e.  RR
99 ifcl 3938 . . . . . . . . . . 11  |-  ( ( x  e.  RR  /\  1  e.  RR )  ->  if ( 1  <_  x ,  x , 
1 )  e.  RR )
10097, 98, 99sylancl 662 . . . . . . . . . 10  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  x  e.  RR )  ->  if ( 1  <_  x ,  x , 
1 )  e.  RR )
101 0red 9497 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  x  e.  RR )  ->  0  e.  RR )
10298a1i 11 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  x  e.  RR )  ->  1  e.  RR )
103 0lt1 9972 . . . . . . . . . . . . 13  |-  0  <  1
104103a1i 11 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  x  e.  RR )  ->  0  <  1 )
105 max1 11267 . . . . . . . . . . . . 13  |-  ( ( 1  e.  RR  /\  x  e.  RR )  ->  1  <_  if (
1  <_  x ,  x ,  1 ) )
10698, 97, 105sylancr 663 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  x  e.  RR )  ->  1  <_  if (
1  <_  x ,  x ,  1 ) )
107101, 102, 100, 104, 106ltletrd 9641 . . . . . . . . . . 11  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  x  e.  RR )  ->  0  <  if ( 1  <_  x ,  x ,  1 ) )
108107gt0ne0d 10014 . . . . . . . . . 10  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  x  e.  RR )  ->  if ( 1  <_  x ,  x , 
1 )  =/=  0
)
109100, 108rereccld 10268 . . . . . . . . 9  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  x  e.  RR )  ->  ( 1  /  if ( 1  <_  x ,  x ,  1 ) )  e.  RR )
110100, 107recgt0d 10377 . . . . . . . . 9  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  x  e.  RR )  ->  0  <  ( 1  /  if ( 1  <_  x ,  x ,  1 ) ) )
111109, 110elrpd 11135 . . . . . . . 8  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  x  e.  RR )  ->  ( 1  /  if ( 1  <_  x ,  x ,  1 ) )  e.  RR+ )
11296, 111ltsubrpd 11165 . . . . . . 7  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  x  e.  RR )  ->  ( sup ( ran 
F ,  RR ,  <  )  -  ( 1  /  if ( 1  <_  x ,  x ,  1 ) ) )  <  sup ( ran  F ,  RR ,  <  ) )
11396, 109resubcld 9886 . . . . . . . 8  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  x  e.  RR )  ->  ( sup ( ran 
F ,  RR ,  <  )  -  ( 1  /  if ( 1  <_  x ,  x ,  1 ) ) )  e.  RR )
114113, 96ltnled 9631 . . . . . . 7  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  x  e.  RR )  ->  ( ( sup ( ran  F ,  RR ,  <  )  -  ( 1  /  if ( 1  <_  x ,  x ,  1 ) ) )  <  sup ( ran  F ,  RR ,  <  )  <->  -.  sup ( ran  F ,  RR ,  <  )  <_  ( sup ( ran  F ,  RR ,  <  )  -  (
1  /  if ( 1  <_  x ,  x ,  1 ) ) ) ) )
115112, 114mpbid 210 . . . . . 6  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  x  e.  RR )  ->  -.  sup ( ran 
F ,  RR ,  <  )  <_  ( sup ( ran  F ,  RR ,  <  )  -  (
1  /  if ( 1  <_  x ,  x ,  1 ) ) ) )
116 simprl 755 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  x  e.  RR )
117 max2 11269 . . . . . . . . . . . 12  |-  ( ( 1  e.  RR  /\  x  e.  RR )  ->  x  <_  if (
1  <_  x ,  x ,  1 ) )
11898, 116, 117sylancr 663 . . . . . . . . . . 11  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  x  <_  if ( 1  <_  x ,  x ,  1 ) )
11939ad2antrr 725 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  sup ( ran  F ,  RR ,  <  )  e.  RR )
120 ffvelrn 5949 . . . . . . . . . . . . . . . . 17  |-  ( ( F : X --> ( RR 
\  { sup ( ran  F ,  RR ,  <  ) } )  /\  y  e.  X )  ->  ( F `  y
)  e.  ( RR 
\  { sup ( ran  F ,  RR ,  <  ) } ) )
121120ad2ant2l 745 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  ( F `  y )  e.  ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )
122 eldifsn 4107 . . . . . . . . . . . . . . . 16  |-  ( ( F `  y )  e.  ( RR  \  { sup ( ran  F ,  RR ,  <  ) } )  <->  ( ( F `  y )  e.  RR  /\  ( F `
 y )  =/= 
sup ( ran  F ,  RR ,  <  )
) )
123121, 122sylib 196 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  ( ( F `  y )  e.  RR  /\  ( F `
 y )  =/= 
sup ( ran  F ,  RR ,  <  )
) )
124123simpld 459 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  ( F `  y )  e.  RR )
125119, 124resubcld 9886 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  y )
)  e.  RR )
12637adantr 465 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  y  e.  X )  ->  ( ran  F  C_  RR  /\  ran  F  =/=  (/)  /\  E. x  e.  RR  A. z  e. 
ran  F  z  <_  x ) )
127 fnfvelrn 5948 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F  Fn  X  /\  y  e.  X )  ->  ( F `  y
)  e.  ran  F
)
12831, 127sylan 471 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  y  e.  X )  ->  ( F `  y )  e.  ran  F )
129 suprub 10401 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ran  F  C_  RR  /\  ran  F  =/=  (/)  /\  E. x  e.  RR  A. z  e. 
ran  F  z  <_  x )  /\  ( F `
 y )  e. 
ran  F )  -> 
( F `  y
)  <_  sup ( ran  F ,  RR ,  <  ) )
130126, 128, 129syl2anc 661 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  y  e.  X )  ->  ( F `  y )  <_  sup ( ran  F ,  RR ,  <  )
)
131130ad2ant2rl 748 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  ( F `  y )  <_  sup ( ran  F ,  RR ,  <  ) )
132123simprd 463 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  ( F `  y )  =/=  sup ( ran  F ,  RR ,  <  ) )
133132necomd 2722 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  sup ( ran  F ,  RR ,  <  )  =/=  ( F `
 y ) )
134124, 119ltlend 9629 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  ( ( F `  y )  <  sup ( ran  F ,  RR ,  <  )  <->  ( ( F `  y
)  <_  sup ( ran  F ,  RR ,  <  )  /\  sup ( ran  F ,  RR ,  <  )  =/=  ( F `
 y ) ) ) )
135131, 133, 134mpbir2and 913 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  ( F `  y )  <  sup ( ran  F ,  RR ,  <  ) )
136124, 119posdifd 10036 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  ( ( F `  y )  <  sup ( ran  F ,  RR ,  <  )  <->  0  <  ( sup ( ran  F ,  RR ,  <  )  -  ( F `
 y ) ) ) )
137135, 136mpbid 210 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  0  <  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  y ) ) )
138137gt0ne0d 10014 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  y )
)  =/=  0 )
139125, 138rereccld 10268 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `
 y ) ) )  e.  RR )
140116, 98, 99sylancl 662 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  if (
1  <_  x ,  x ,  1 )  e.  RR )
141 letr 9578 . . . . . . . . . . . 12  |-  ( ( ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  y ) ) )  e.  RR  /\  x  e.  RR  /\  if ( 1  <_  x ,  x ,  1 )  e.  RR )  -> 
( ( ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `
 y ) ) )  <_  x  /\  x  <_  if ( 1  <_  x ,  x ,  1 ) )  ->  ( 1  / 
( sup ( ran 
F ,  RR ,  <  )  -  ( F `
 y ) ) )  <_  if (
1  <_  x ,  x ,  1 ) ) )
142139, 116, 140, 141syl3anc 1219 . . . . . . . . . . 11  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  ( (
( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  y ) ) )  <_  x  /\  x  <_  if ( 1  <_  x ,  x ,  1 ) )  ->  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `
 y ) ) )  <_  if (
1  <_  x ,  x ,  1 ) ) )
143118, 142mpan2d 674 . . . . . . . . . 10  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  ( (
1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  y ) ) )  <_  x  ->  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  y ) ) )  <_  if ( 1  <_  x ,  x ,  1 ) ) )
144 fveq2 5798 . . . . . . . . . . . . . . 15  |-  ( z  =  y  ->  ( F `  z )  =  ( F `  y ) )
145144oveq2d 6215 . . . . . . . . . . . . . 14  |-  ( z  =  y  ->  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) )  =  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  y ) ) )
146145oveq2d 6215 . . . . . . . . . . . . 13  |-  ( z  =  y  ->  (
1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) ) )  =  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  y ) ) ) )
147 ovex 6224 . . . . . . . . . . . . 13  |-  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `
 y ) ) )  e.  _V
148146, 85, 147fvmpt 5882 . . . . . . . . . . . 12  |-  ( y  e.  X  ->  (
( z  e.  X  |->  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) ) ) ) `  y )  =  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  y ) ) ) )
149148breq1d 4409 . . . . . . . . . . 11  |-  ( y  e.  X  ->  (
( ( z  e.  X  |->  ( 1  / 
( sup ( ran 
F ,  RR ,  <  )  -  ( F `
 z ) ) ) ) `  y
)  <_  x  <->  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `
 y ) ) )  <_  x )
)
150149ad2antll 728 . . . . . . . . . 10  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  ( (
( z  e.  X  |->  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) ) ) ) `  y )  <_  x  <->  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  y ) ) )  <_  x
) )
151109adantrr 716 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  ( 1  /  if ( 1  <_  x ,  x ,  1 ) )  e.  RR )
152107adantrr 716 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  0  <  if ( 1  <_  x ,  x ,  1 ) )
153140, 152recgt0d 10377 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  0  <  ( 1  /  if ( 1  <_  x ,  x ,  1 ) ) )
154 lerec 10324 . . . . . . . . . . . 12  |-  ( ( ( ( 1  /  if ( 1  <_  x ,  x ,  1 ) )  e.  RR  /\  0  <  ( 1  /  if ( 1  <_  x ,  x ,  1 ) ) )  /\  (
( sup ( ran 
F ,  RR ,  <  )  -  ( F `
 y ) )  e.  RR  /\  0  <  ( sup ( ran 
F ,  RR ,  <  )  -  ( F `
 y ) ) ) )  ->  (
( 1  /  if ( 1  <_  x ,  x ,  1 ) )  <_  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  y )
)  <->  ( 1  / 
( sup ( ran 
F ,  RR ,  <  )  -  ( F `
 y ) ) )  <_  ( 1  /  ( 1  /  if ( 1  <_  x ,  x ,  1 ) ) ) ) )
155151, 153, 125, 137, 154syl22anc 1220 . . . . . . . . . . 11  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  ( (
1  /  if ( 1  <_  x ,  x ,  1 ) )  <_  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  y )
)  <->  ( 1  / 
( sup ( ran 
F ,  RR ,  <  )  -  ( F `
 y ) ) )  <_  ( 1  /  ( 1  /  if ( 1  <_  x ,  x ,  1 ) ) ) ) )
156 lesub 9928 . . . . . . . . . . . 12  |-  ( ( ( 1  /  if ( 1  <_  x ,  x ,  1 ) )  e.  RR  /\  sup ( ran  F ,  RR ,  <  )  e.  RR  /\  ( F `
 y )  e.  RR )  ->  (
( 1  /  if ( 1  <_  x ,  x ,  1 ) )  <_  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  y )
)  <->  ( F `  y )  <_  ( sup ( ran  F ,  RR ,  <  )  -  ( 1  /  if ( 1  <_  x ,  x ,  1 ) ) ) ) )
157151, 119, 124, 156syl3anc 1219 . . . . . . . . . . 11  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  ( (
1  /  if ( 1  <_  x ,  x ,  1 ) )  <_  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  y )
)  <->  ( F `  y )  <_  ( sup ( ran  F ,  RR ,  <  )  -  ( 1  /  if ( 1  <_  x ,  x ,  1 ) ) ) ) )
158140recnd 9522 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  if (
1  <_  x ,  x ,  1 )  e.  CC )
159108adantrr 716 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  if (
1  <_  x ,  x ,  1 )  =/=  0 )
160158, 159recrecd 10214 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  ( 1  /  ( 1  /  if ( 1  <_  x ,  x ,  1 ) ) )  =  if ( 1  <_  x ,  x ,  1 ) )
161160breq2d 4411 . . . . . . . . . . 11  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  ( (
1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  y ) ) )  <_  (
1  /  ( 1  /  if ( 1  <_  x ,  x ,  1 ) ) )  <->  ( 1  / 
( sup ( ran 
F ,  RR ,  <  )  -  ( F `
 y ) ) )  <_  if (
1  <_  x ,  x ,  1 ) ) )
162155, 157, 1613bitr3d 283 . . . . . . . . . 10  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  ( ( F `  y )  <_  ( sup ( ran 
F ,  RR ,  <  )  -  ( 1  /  if ( 1  <_  x ,  x ,  1 ) ) )  <->  ( 1  / 
( sup ( ran 
F ,  RR ,  <  )  -  ( F `
 y ) ) )  <_  if (
1  <_  x ,  x ,  1 ) ) )
163143, 150, 1623imtr4d 268 . . . . . . . . 9  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  ( (
( z  e.  X  |->  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) ) ) ) `  y )  <_  x  ->  ( F `  y
)  <_  ( sup ( ran  F ,  RR ,  <  )  -  (
1  /  if ( 1  <_  x ,  x ,  1 ) ) ) ) )
164163anassrs 648 . . . . . . . 8  |-  ( ( ( ( ph  /\  F : X --> ( RR 
\  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  x  e.  RR )  /\  y  e.  X
)  ->  ( (
( z  e.  X  |->  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) ) ) ) `  y )  <_  x  ->  ( F `  y
)  <_  ( sup ( ran  F ,  RR ,  <  )  -  (
1  /  if ( 1  <_  x ,  x ,  1 ) ) ) ) )
165164ralimdva 2831 . . . . . . 7  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  x  e.  RR )  ->  ( A. y  e.  X  ( ( z  e.  X  |->  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `
 z ) ) ) ) `  y
)  <_  x  ->  A. y  e.  X  ( F `  y )  <_  ( sup ( ran  F ,  RR ,  <  )  -  ( 1  /  if ( 1  <_  x ,  x ,  1 ) ) ) ) )
16637ad2antrr 725 . . . . . . . . 9  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  x  e.  RR )  ->  ( ran  F  C_  RR  /\  ran  F  =/=  (/)  /\  E. x  e.  RR  A. z  e. 
ran  F  z  <_  x ) )
167 suprleub 10404 . . . . . . . . 9  |-  ( ( ( ran  F  C_  RR  /\  ran  F  =/=  (/)  /\  E. x  e.  RR  A. z  e. 
ran  F  z  <_  x )  /\  ( sup ( ran  F ,  RR ,  <  )  -  ( 1  /  if ( 1  <_  x ,  x ,  1 ) ) )  e.  RR )  ->  ( sup ( ran  F ,  RR ,  <  )  <_  ( sup ( ran  F ,  RR ,  <  )  -  (
1  /  if ( 1  <_  x ,  x ,  1 ) ) )  <->  A. z  e.  ran  F  z  <_ 
( sup ( ran 
F ,  RR ,  <  )  -  ( 1  /  if ( 1  <_  x ,  x ,  1 ) ) ) ) )
168166, 113, 167syl2anc 661 . . . . . . . 8  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  x  e.  RR )  ->  ( sup ( ran 
F ,  RR ,  <  )  <_  ( sup ( ran  F ,  RR ,  <  )  -  (
1  /  if ( 1  <_  x ,  x ,  1 ) ) )  <->  A. z  e.  ran  F  z  <_ 
( sup ( ran 
F ,  RR ,  <  )  -  ( 1  /  if ( 1  <_  x ,  x ,  1 ) ) ) ) )
16931ad2antrr 725 . . . . . . . . 9  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  x  e.  RR )  ->  F  Fn  X )
170 breq1 4402 . . . . . . . . . 10  |-  ( z  =  ( F `  y )  ->  (
z  <_  ( sup ( ran  F ,  RR ,  <  )  -  (
1  /  if ( 1  <_  x ,  x ,  1 ) ) )  <->  ( F `  y )  <_  ( sup ( ran  F ,  RR ,  <  )  -  ( 1  /  if ( 1  <_  x ,  x ,  1 ) ) ) ) )
171170ralrn 5954 . . . . . . . . 9  |-  ( F  Fn  X  ->  ( A. z  e.  ran  F  z  <_  ( sup ( ran  F ,  RR ,  <  )  -  (
1  /  if ( 1  <_  x ,  x ,  1 ) ) )  <->  A. y  e.  X  ( F `  y )  <_  ( sup ( ran  F ,  RR ,  <  )  -  ( 1  /  if ( 1  <_  x ,  x ,  1 ) ) ) ) )
172169, 171syl 16 . . . . . . . 8  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  x  e.  RR )  ->  ( A. z  e. 
ran  F  z  <_  ( sup ( ran  F ,  RR ,  <  )  -  ( 1  /  if ( 1  <_  x ,  x ,  1 ) ) )  <->  A. y  e.  X  ( F `  y )  <_  ( sup ( ran  F ,  RR ,  <  )  -  ( 1  /  if ( 1  <_  x ,  x ,  1 ) ) ) ) )
173168, 172bitrd 253 . . . . . . 7  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  x  e.  RR )  ->  ( sup ( ran 
F ,  RR ,  <  )  <_  ( sup ( ran  F ,  RR ,  <  )  -  (
1  /  if ( 1  <_  x ,  x ,  1 ) ) )  <->  A. y  e.  X  ( F `  y )  <_  ( sup ( ran  F ,  RR ,  <  )  -  ( 1  /  if ( 1  <_  x ,  x ,  1 ) ) ) ) )
174165, 173sylibrd 234 . . . . . 6  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  x  e.  RR )  ->  ( A. y  e.  X  ( ( z  e.  X  |->  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `
 z ) ) ) ) `  y
)  <_  x  ->  sup ( ran  F ,  RR ,  <  )  <_ 
( sup ( ran 
F ,  RR ,  <  )  -  ( 1  /  if ( 1  <_  x ,  x ,  1 ) ) ) ) )
175115, 174mtod 177 . . . . 5  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  x  e.  RR )  ->  -.  A. y  e.  X  ( ( z  e.  X  |->  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `
 z ) ) ) ) `  y
)  <_  x )
176175nrexdv 2923 . . . 4  |-  ( (
ph  /\  F : X
--> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  ->  -.  E. x  e.  RR  A. y  e.  X  (
( z  e.  X  |->  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) ) ) ) `  y )  <_  x
)
17795, 176pm2.65da 576 . . 3  |-  ( ph  ->  -.  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )
178130ralrimiva 2829 . . . . . . . . 9  |-  ( ph  ->  A. y  e.  X  ( F `  y )  <_  sup ( ran  F ,  RR ,  <  )
)
179 breq2 4403 . . . . . . . . . 10  |-  ( ( F `  x )  =  sup ( ran 
F ,  RR ,  <  )  ->  ( ( F `  y )  <_  ( F `  x
)  <->  ( F `  y )  <_  sup ( ran  F ,  RR ,  <  ) ) )
180179ralbidv 2845 . . . . . . . . 9  |-  ( ( F `  x )  =  sup ( ran 
F ,  RR ,  <  )  ->  ( A. y  e.  X  ( F `  y )  <_  ( F `  x
)  <->  A. y  e.  X  ( F `  y )  <_  sup ( ran  F ,  RR ,  <  )
) )
181178, 180syl5ibrcom 222 . . . . . . . 8  |-  ( ph  ->  ( ( F `  x )  =  sup ( ran  F ,  RR ,  <  )  ->  A. y  e.  X  ( F `  y )  <_  ( F `  x )
) )
182181necon3bd 2663 . . . . . . 7  |-  ( ph  ->  ( -.  A. y  e.  X  ( F `  y )  <_  ( F `  x )  ->  ( F `  x
)  =/=  sup ( ran  F ,  RR ,  <  ) ) )
183182adantr 465 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  ( -.  A. y  e.  X  ( F `  y )  <_  ( F `  x )  ->  ( F `  x )  =/=  sup ( ran  F ,  RR ,  <  )
) )
18419ffvelrnda 5951 . . . . . . 7  |-  ( (
ph  /\  x  e.  X )  ->  ( F `  x )  e.  RR )
185 eldifsn 4107 . . . . . . . 8  |-  ( ( F `  x )  e.  ( RR  \  { sup ( ran  F ,  RR ,  <  ) } )  <->  ( ( F `  x )  e.  RR  /\  ( F `
 x )  =/= 
sup ( ran  F ,  RR ,  <  )
) )
186185baib 896 . . . . . . 7  |-  ( ( F `  x )  e.  RR  ->  (
( F `  x
)  e.  ( RR 
\  { sup ( ran  F ,  RR ,  <  ) } )  <->  ( F `  x )  =/=  sup ( ran  F ,  RR ,  <  ) ) )
187184, 186syl 16 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  (
( F `  x
)  e.  ( RR 
\  { sup ( ran  F ,  RR ,  <  ) } )  <->  ( F `  x )  =/=  sup ( ran  F ,  RR ,  <  ) ) )
188183, 187sylibrd 234 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  ( -.  A. y  e.  X  ( F `  y )  <_  ( F `  x )  ->  ( F `  x )  e.  ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) ) )
189188ralimdva 2831 . . . 4  |-  ( ph  ->  ( A. x  e.  X  -.  A. y  e.  X  ( F `  y )  <_  ( F `  x )  ->  A. x  e.  X  ( F `  x )  e.  ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) ) )
190 ffnfv 5977 . . . . . 6  |-  ( F : X --> ( RR 
\  { sup ( ran  F ,  RR ,  <  ) } )  <->  ( F  Fn  X  /\  A. x  e.  X  ( F `  x )  e.  ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) ) )
191190baib 896 . . . . 5  |-  ( F  Fn  X  ->  ( F : X --> ( RR 
\  { sup ( ran  F ,  RR ,  <  ) } )  <->  A. x  e.  X  ( F `  x )  e.  ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) ) )
19231, 191syl 16 . . . 4  |-  ( ph  ->  ( F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } )  <->  A. x  e.  X  ( F `  x )  e.  ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) ) )
193189, 192sylibrd 234 . . 3  |-  ( ph  ->  ( A. x  e.  X  -.  A. y  e.  X  ( F `  y )  <_  ( F `  x )  ->  F : X --> ( RR 
\  { sup ( ran  F ,  RR ,  <  ) } ) ) )
194177, 193mtod 177 . 2  |-  ( ph  ->  -.  A. x  e.  X  -.  A. y  e.  X  ( F `  y )  <_  ( F `  x )
)
195 dfrex2 2856 . 2  |-  ( E. x  e.  X  A. y  e.  X  ( F `  y )  <_  ( F `  x
)  <->  -.  A. x  e.  X  -.  A. y  e.  X  ( F `  y )  <_  ( F `  x )
)
196194, 195sylibr 212 1  |-  ( ph  ->  E. x  e.  X  A. y  e.  X  ( F `  y )  <_  ( F `  x ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758    =/= wne 2647   A.wral 2798   E.wrex 2799    \ cdif 3432    C_ wss 3435   (/)c0 3744   ifcif 3898   {csn 3984   U.cuni 4198   class class class wbr 4399    |-> cmpt 4457   dom cdm 4947   ran crn 4948    Fn wfn 5520   -->wf 5521   ` cfv 5525  (class class class)co 6199   supcsup 7800   CCcc 9390   RRcr 9391   0cc0 9392   1c1 9393    < clt 9528    <_ cle 9529    - cmin 9705    / cdiv 10103   (,)cioo 11410   ↾t crest 14477   TopOpenctopn 14478   topGenctg 14494  ℂfldccnfld 17942   Topctop 18629  TopOnctopon 18630    Cn ccn 18959   Compccmp 19120    tX ctx 19264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4510  ax-sep 4520  ax-nul 4528  ax-pow 4577  ax-pr 4638  ax-un 6481  ax-inf2 7957  ax-cnex 9448  ax-resscn 9449  ax-1cn 9450  ax-icn 9451  ax-addcl 9452  ax-addrcl 9453  ax-mulcl 9454  ax-mulrcl 9455  ax-mulcom 9456  ax-addass 9457  ax-mulass 9458  ax-distr 9459  ax-i2m1 9460  ax-1ne0 9461  ax-1rid 9462  ax-rnegex 9463  ax-rrecex 9464  ax-cnre 9465  ax-pre-lttri 9466  ax-pre-lttrn 9467  ax-pre-ltadd 9468  ax-pre-mulgt0 9469  ax-pre-sup 9470  ax-mulf 9472
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2649  df-nel 2650  df-ral 2803  df-rex 2804  df-reu 2805  df-rmo 2806  df-rab 2807  df-v 3078  df-sbc 3293  df-csb 3395  df-dif 3438  df-un 3440  df-in 3442  df-ss 3449  df-pss 3451  df-nul 3745  df-if 3899  df-pw 3969  df-sn 3985  df-pr 3987  df-tp 3989  df-op 3991  df-uni 4199  df-int 4236  df-iun 4280  df-iin 4281  df-br 4400  df-opab 4458  df-mpt 4459  df-tr 4493  df-eprel 4739  df-id 4743  df-po 4748  df-so 4749  df-fr 4786  df-se 4787  df-we 4788  df-ord 4829  df-on 4830  df-lim 4831  df-suc 4832  df-xp 4953  df-rel 4954  df-cnv 4955  df-co 4956  df-dm 4957  df-rn 4958  df-res 4959  df-ima 4960  df-iota 5488  df-fun 5527  df-fn 5528  df-f 5529  df-f1 5530  df-fo 5531  df-f1o 5532  df-fv 5533  df-isom 5534  df-riota 6160  df-ov 6202  df-oprab 6203  df-mpt2 6204  df-of 6429  df-om 6586  df-1st 6686  df-2nd 6687  df-supp 6800  df-recs 6941  df-rdg 6975  df-1o 7029  df-2o 7030  df-oadd 7033  df-er 7210  df-map 7325  df-ixp 7373  df-en 7420  df-dom 7421  df-sdom 7422  df-fin 7423  df-fsupp 7731  df-fi 7771  df-sup 7801  df-oi 7834  df-card 8219  df-cda 8447  df-pnf 9530  df-mnf 9531  df-xr 9532  df-ltxr 9533  df-le 9534  df-sub 9707  df-neg 9708  df-div 10104  df-nn 10433  df-2 10490  df-3 10491  df-4 10492  df-5 10493  df-6 10494  df-7 10495  df-8 10496  df-9 10497  df-10 10498  df-n0 10690  df-z 10757  df-dec 10866  df-uz 10972  df-q 11064  df-rp 11102  df-xneg 11199  df-xadd 11200  df-xmul 11201  df-ioo 11414  df-icc 11417  df-fz 11554  df-fzo 11665  df-seq 11923  df-exp 11982  df-hash 12220  df-cj 12705  df-re 12706  df-im 12707  df-sqr 12841  df-abs 12842  df-struct 14293  df-ndx 14294  df-slot 14295  df-base 14296  df-sets 14297  df-ress 14298  df-plusg 14369  df-mulr 14370  df-starv 14371  df-sca 14372  df-vsca 14373  df-ip 14374  df-tset 14375  df-ple 14376  df-ds 14378  df-unif 14379  df-hom 14380  df-cco 14381  df-rest 14479  df-topn 14480  df-0g 14498  df-gsum 14499  df-topgen 14500  df-pt 14501  df-prds 14504  df-xrs 14558  df-qtop 14563  df-imas 14564  df-xps 14566  df-mre 14642  df-mrc 14643  df-acs 14645  df-mnd 15533  df-submnd 15583  df-mulg 15666  df-cntz 15953  df-cmn 16399  df-psmet 17933  df-xmet 17934  df-met 17935  df-bl 17936  df-mopn 17937  df-cnfld 17943  df-top 18634  df-bases 18636  df-topon 18637  df-topsp 18638  df-cn 18962  df-cnp 18963  df-cmp 19121  df-tx 19266  df-hmeo 19459  df-xms 20026  df-ms 20027  df-tms 20028
This theorem is referenced by:  evth2  20663  evthicc  21074  evthf  29896  cncmpmax  29901
  Copyright terms: Public domain W3C validator