MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evlslem4OLD Structured version   Unicode version

Theorem evlslem4OLD 18495
Description: The support of a tensor product of ring element families is contained in the product of the supports. (Contributed by Stefan O'Rear, 8-Mar-2015.) Obsolete version of evlslem4 18496 as of 18-Jul-2019. (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
evlslem4.b  |-  B  =  ( Base `  R
)
evlslem4.z  |-  .0.  =  ( 0g `  R )
evlslem4.t  |-  .x.  =  ( .r `  R )
evlslem4.r  |-  ( ph  ->  R  e.  Ring )
evlslem4.x  |-  ( (
ph  /\  x  e.  I )  ->  X  e.  B )
evlslem4.y  |-  ( (
ph  /\  y  e.  J )  ->  Y  e.  B )
Assertion
Ref Expression
evlslem4OLD  |-  ( ph  ->  ( `' ( x  e.  I ,  y  e.  J  |->  ( X 
.x.  Y ) )
" ( _V  \  {  .0.  } ) ) 
C_  ( ( `' ( x  e.  I  |->  X ) " ( _V  \  {  .0.  }
) )  X.  ( `' ( y  e.  J  |->  Y ) "
( _V  \  {  .0.  } ) ) ) )
Distinct variable groups:    x, y, I    x, J, y    ph, x, y    y, X    x, B, y    x,  .x. , y    x, Y
Allowed substitution hints:    R( x, y)    X( x)    Y( y)    .0. ( x, y)

Proof of Theorem evlslem4OLD
Dummy variables  i 
j  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2566 . . . . . . 7  |-  F/_ i
( ( ( x  e.  I  |->  X ) `
 x )  .x.  ( ( y  e.  J  |->  Y ) `  y ) )
2 nfcv 2566 . . . . . . 7  |-  F/_ j
( ( ( x  e.  I  |->  X ) `
 x )  .x.  ( ( y  e.  J  |->  Y ) `  y ) )
3 nffvmpt1 5859 . . . . . . . 8  |-  F/_ x
( ( x  e.  I  |->  X ) `  i )
4 nfcv 2566 . . . . . . . 8  |-  F/_ x  .x.
5 nfcv 2566 . . . . . . . 8  |-  F/_ x
( ( y  e.  J  |->  Y ) `  j )
63, 4, 5nfov 6306 . . . . . . 7  |-  F/_ x
( ( ( x  e.  I  |->  X ) `
 i )  .x.  ( ( y  e.  J  |->  Y ) `  j ) )
7 nfcv 2566 . . . . . . . 8  |-  F/_ y
( ( x  e.  I  |->  X ) `  i )
8 nfcv 2566 . . . . . . . 8  |-  F/_ y  .x.
9 nffvmpt1 5859 . . . . . . . 8  |-  F/_ y
( ( y  e.  J  |->  Y ) `  j )
107, 8, 9nfov 6306 . . . . . . 7  |-  F/_ y
( ( ( x  e.  I  |->  X ) `
 i )  .x.  ( ( y  e.  J  |->  Y ) `  j ) )
11 fveq2 5851 . . . . . . . 8  |-  ( x  =  i  ->  (
( x  e.  I  |->  X ) `  x
)  =  ( ( x  e.  I  |->  X ) `  i ) )
12 fveq2 5851 . . . . . . . 8  |-  ( y  =  j  ->  (
( y  e.  J  |->  Y ) `  y
)  =  ( ( y  e.  J  |->  Y ) `  j ) )
1311, 12oveqan12d 6299 . . . . . . 7  |-  ( ( x  =  i  /\  y  =  j )  ->  ( ( ( x  e.  I  |->  X ) `
 x )  .x.  ( ( y  e.  J  |->  Y ) `  y ) )  =  ( ( ( x  e.  I  |->  X ) `
 i )  .x.  ( ( y  e.  J  |->  Y ) `  j ) ) )
141, 2, 6, 10, 13cbvmpt2 6359 . . . . . 6  |-  ( x  e.  I ,  y  e.  J  |->  ( ( ( x  e.  I  |->  X ) `  x
)  .x.  ( (
y  e.  J  |->  Y ) `  y ) ) )  =  ( i  e.  I ,  j  e.  J  |->  ( ( ( x  e.  I  |->  X ) `  i )  .x.  (
( y  e.  J  |->  Y ) `  j
) ) )
15 vex 3064 . . . . . . . . 9  |-  i  e. 
_V
16 vex 3064 . . . . . . . . 9  |-  j  e. 
_V
1715, 16eqop2 6827 . . . . . . . 8  |-  ( z  =  <. i ,  j
>. 
<->  ( z  e.  ( _V  X.  _V )  /\  ( ( 1st `  z
)  =  i  /\  ( 2nd `  z )  =  j ) ) )
18 fveq2 5851 . . . . . . . . . 10  |-  ( ( 1st `  z )  =  i  ->  (
( x  e.  I  |->  X ) `  ( 1st `  z ) )  =  ( ( x  e.  I  |->  X ) `
 i ) )
19 fveq2 5851 . . . . . . . . . 10  |-  ( ( 2nd `  z )  =  j  ->  (
( y  e.  J  |->  Y ) `  ( 2nd `  z ) )  =  ( ( y  e.  J  |->  Y ) `
 j ) )
2018, 19oveqan12d 6299 . . . . . . . . 9  |-  ( ( ( 1st `  z
)  =  i  /\  ( 2nd `  z )  =  j )  -> 
( ( ( x  e.  I  |->  X ) `
 ( 1st `  z
) )  .x.  (
( y  e.  J  |->  Y ) `  ( 2nd `  z ) ) )  =  ( ( ( x  e.  I  |->  X ) `  i
)  .x.  ( (
y  e.  J  |->  Y ) `  j ) ) )
2120adantl 466 . . . . . . . 8  |-  ( ( z  e.  ( _V 
X.  _V )  /\  (
( 1st `  z
)  =  i  /\  ( 2nd `  z )  =  j ) )  ->  ( ( ( x  e.  I  |->  X ) `  ( 1st `  z ) )  .x.  ( ( y  e.  J  |->  Y ) `  ( 2nd `  z ) ) )  =  ( ( ( x  e.  I  |->  X ) `  i )  .x.  (
( y  e.  J  |->  Y ) `  j
) ) )
2217, 21sylbi 197 . . . . . . 7  |-  ( z  =  <. i ,  j
>.  ->  ( ( ( x  e.  I  |->  X ) `  ( 1st `  z ) )  .x.  ( ( y  e.  J  |->  Y ) `  ( 2nd `  z ) ) )  =  ( ( ( x  e.  I  |->  X ) `  i )  .x.  (
( y  e.  J  |->  Y ) `  j
) ) )
2322mpt2mpt 6377 . . . . . 6  |-  ( z  e.  ( I  X.  J )  |->  ( ( ( x  e.  I  |->  X ) `  ( 1st `  z ) ) 
.x.  ( ( y  e.  J  |->  Y ) `
 ( 2nd `  z
) ) ) )  =  ( i  e.  I ,  j  e.  J  |->  ( ( ( x  e.  I  |->  X ) `  i ) 
.x.  ( ( y  e.  J  |->  Y ) `
 j ) ) )
2414, 23eqtr4i 2436 . . . . 5  |-  ( x  e.  I ,  y  e.  J  |->  ( ( ( x  e.  I  |->  X ) `  x
)  .x.  ( (
y  e.  J  |->  Y ) `  y ) ) )  =  ( z  e.  ( I  X.  J )  |->  ( ( ( x  e.  I  |->  X ) `  ( 1st `  z ) )  .x.  ( ( y  e.  J  |->  Y ) `  ( 2nd `  z ) ) ) )
25 simp2 1000 . . . . . . . 8  |-  ( (
ph  /\  x  e.  I  /\  y  e.  J
)  ->  x  e.  I )
26 evlslem4.x . . . . . . . . 9  |-  ( (
ph  /\  x  e.  I )  ->  X  e.  B )
27263adant3 1019 . . . . . . . 8  |-  ( (
ph  /\  x  e.  I  /\  y  e.  J
)  ->  X  e.  B )
28 eqid 2404 . . . . . . . . 9  |-  ( x  e.  I  |->  X )  =  ( x  e.  I  |->  X )
2928fvmpt2 5943 . . . . . . . 8  |-  ( ( x  e.  I  /\  X  e.  B )  ->  ( ( x  e.  I  |->  X ) `  x )  =  X )
3025, 27, 29syl2anc 661 . . . . . . 7  |-  ( (
ph  /\  x  e.  I  /\  y  e.  J
)  ->  ( (
x  e.  I  |->  X ) `  x )  =  X )
31 simp3 1001 . . . . . . . 8  |-  ( (
ph  /\  x  e.  I  /\  y  e.  J
)  ->  y  e.  J )
32 evlslem4.y . . . . . . . . 9  |-  ( (
ph  /\  y  e.  J )  ->  Y  e.  B )
33323adant2 1018 . . . . . . . 8  |-  ( (
ph  /\  x  e.  I  /\  y  e.  J
)  ->  Y  e.  B )
34 eqid 2404 . . . . . . . . 9  |-  ( y  e.  J  |->  Y )  =  ( y  e.  J  |->  Y )
3534fvmpt2 5943 . . . . . . . 8  |-  ( ( y  e.  J  /\  Y  e.  B )  ->  ( ( y  e.  J  |->  Y ) `  y )  =  Y )
3631, 33, 35syl2anc 661 . . . . . . 7  |-  ( (
ph  /\  x  e.  I  /\  y  e.  J
)  ->  ( (
y  e.  J  |->  Y ) `  y )  =  Y )
3730, 36oveq12d 6298 . . . . . 6  |-  ( (
ph  /\  x  e.  I  /\  y  e.  J
)  ->  ( (
( x  e.  I  |->  X ) `  x
)  .x.  ( (
y  e.  J  |->  Y ) `  y ) )  =  ( X 
.x.  Y ) )
3837mpt2eq3dva 6344 . . . . 5  |-  ( ph  ->  ( x  e.  I ,  y  e.  J  |->  ( ( ( x  e.  I  |->  X ) `
 x )  .x.  ( ( y  e.  J  |->  Y ) `  y ) ) )  =  ( x  e.  I ,  y  e.  J  |->  ( X  .x.  Y ) ) )
3924, 38syl5reqr 2460 . . . 4  |-  ( ph  ->  ( x  e.  I ,  y  e.  J  |->  ( X  .x.  Y
) )  =  ( z  e.  ( I  X.  J )  |->  ( ( ( x  e.  I  |->  X ) `  ( 1st `  z ) )  .x.  ( ( y  e.  J  |->  Y ) `  ( 2nd `  z ) ) ) ) )
4039cnveqd 5001 . . 3  |-  ( ph  ->  `' ( x  e.  I ,  y  e.  J  |->  ( X  .x.  Y ) )  =  `' ( z  e.  ( I  X.  J
)  |->  ( ( ( x  e.  I  |->  X ) `  ( 1st `  z ) )  .x.  ( ( y  e.  J  |->  Y ) `  ( 2nd `  z ) ) ) ) )
4140imaeq1d 5158 . 2  |-  ( ph  ->  ( `' ( x  e.  I ,  y  e.  J  |->  ( X 
.x.  Y ) )
" ( _V  \  {  .0.  } ) )  =  ( `' ( z  e.  ( I  X.  J )  |->  ( ( ( x  e.  I  |->  X ) `  ( 1st `  z ) )  .x.  ( ( y  e.  J  |->  Y ) `  ( 2nd `  z ) ) ) ) " ( _V 
\  {  .0.  }
) ) )
42 difxp 5251 . . . . . 6  |-  ( ( I  X.  J ) 
\  ( ( `' ( x  e.  I  |->  X ) " ( _V  \  {  .0.  }
) )  X.  ( `' ( y  e.  J  |->  Y ) "
( _V  \  {  .0.  } ) ) ) )  =  ( ( ( I  \  ( `' ( x  e.  I  |->  X ) "
( _V  \  {  .0.  } ) ) )  X.  J )  u.  ( I  X.  ( J  \  ( `' ( y  e.  J  |->  Y ) " ( _V 
\  {  .0.  }
) ) ) ) )
4342eleq2i 2482 . . . . 5  |-  ( z  e.  ( ( I  X.  J )  \ 
( ( `' ( x  e.  I  |->  X ) " ( _V 
\  {  .0.  }
) )  X.  ( `' ( y  e.  J  |->  Y ) "
( _V  \  {  .0.  } ) ) ) )  <->  z  e.  ( ( ( I  \ 
( `' ( x  e.  I  |->  X )
" ( _V  \  {  .0.  } ) ) )  X.  J )  u.  ( I  X.  ( J  \  ( `' ( y  e.  J  |->  Y ) "
( _V  \  {  .0.  } ) ) ) ) ) )
44 elun 3586 . . . . 5  |-  ( z  e.  ( ( ( I  \  ( `' ( x  e.  I  |->  X ) " ( _V  \  {  .0.  }
) ) )  X.  J )  u.  (
I  X.  ( J 
\  ( `' ( y  e.  J  |->  Y ) " ( _V 
\  {  .0.  }
) ) ) ) )  <->  ( z  e.  ( ( I  \ 
( `' ( x  e.  I  |->  X )
" ( _V  \  {  .0.  } ) ) )  X.  J )  \/  z  e.  ( I  X.  ( J 
\  ( `' ( y  e.  J  |->  Y ) " ( _V 
\  {  .0.  }
) ) ) ) ) )
4543, 44bitri 251 . . . 4  |-  ( z  e.  ( ( I  X.  J )  \ 
( ( `' ( x  e.  I  |->  X ) " ( _V 
\  {  .0.  }
) )  X.  ( `' ( y  e.  J  |->  Y ) "
( _V  \  {  .0.  } ) ) ) )  <->  ( z  e.  ( ( I  \ 
( `' ( x  e.  I  |->  X )
" ( _V  \  {  .0.  } ) ) )  X.  J )  \/  z  e.  ( I  X.  ( J 
\  ( `' ( y  e.  J  |->  Y ) " ( _V 
\  {  .0.  }
) ) ) ) ) )
4626, 28fmptd 6035 . . . . . . . 8  |-  ( ph  ->  ( x  e.  I  |->  X ) : I --> B )
47 xp1st 6816 . . . . . . . 8  |-  ( z  e.  ( ( I 
\  ( `' ( x  e.  I  |->  X ) " ( _V 
\  {  .0.  }
) ) )  X.  J )  ->  ( 1st `  z )  e.  ( I  \  ( `' ( x  e.  I  |->  X ) "
( _V  \  {  .0.  } ) ) ) )
48 id 23 . . . . . . . . 9  |-  ( ( x  e.  I  |->  X ) : I --> B  -> 
( x  e.  I  |->  X ) : I --> B )
49 ssid 3463 . . . . . . . . . 10  |-  ( `' ( x  e.  I  |->  X ) " ( _V  \  {  .0.  }
) )  C_  ( `' ( x  e.  I  |->  X ) "
( _V  \  {  .0.  } ) )
5049a1i 11 . . . . . . . . 9  |-  ( ( x  e.  I  |->  X ) : I --> B  -> 
( `' ( x  e.  I  |->  X )
" ( _V  \  {  .0.  } ) ) 
C_  ( `' ( x  e.  I  |->  X ) " ( _V 
\  {  .0.  }
) ) )
5148, 50suppssrOLD 6001 . . . . . . . 8  |-  ( ( ( x  e.  I  |->  X ) : I --> B  /\  ( 1st `  z )  e.  ( I  \  ( `' ( x  e.  I  |->  X ) " ( _V  \  {  .0.  }
) ) ) )  ->  ( ( x  e.  I  |->  X ) `
 ( 1st `  z
) )  =  .0.  )
5246, 47, 51syl2an 477 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( ( I  \ 
( `' ( x  e.  I  |->  X )
" ( _V  \  {  .0.  } ) ) )  X.  J ) )  ->  ( (
x  e.  I  |->  X ) `  ( 1st `  z ) )  =  .0.  )
5352oveq1d 6295 . . . . . 6  |-  ( (
ph  /\  z  e.  ( ( I  \ 
( `' ( x  e.  I  |->  X )
" ( _V  \  {  .0.  } ) ) )  X.  J ) )  ->  ( (
( x  e.  I  |->  X ) `  ( 1st `  z ) ) 
.x.  ( ( y  e.  J  |->  Y ) `
 ( 2nd `  z
) ) )  =  (  .0.  .x.  (
( y  e.  J  |->  Y ) `  ( 2nd `  z ) ) ) )
54 evlslem4.r . . . . . . . 8  |-  ( ph  ->  R  e.  Ring )
5554adantr 465 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( ( I  \ 
( `' ( x  e.  I  |->  X )
" ( _V  \  {  .0.  } ) ) )  X.  J ) )  ->  R  e.  Ring )
5632, 34fmptd 6035 . . . . . . . 8  |-  ( ph  ->  ( y  e.  J  |->  Y ) : J --> B )
57 xp2nd 6817 . . . . . . . 8  |-  ( z  e.  ( ( I 
\  ( `' ( x  e.  I  |->  X ) " ( _V 
\  {  .0.  }
) ) )  X.  J )  ->  ( 2nd `  z )  e.  J )
58 ffvelrn 6009 . . . . . . . 8  |-  ( ( ( y  e.  J  |->  Y ) : J --> B  /\  ( 2nd `  z
)  e.  J )  ->  ( ( y  e.  J  |->  Y ) `
 ( 2nd `  z
) )  e.  B
)
5956, 57, 58syl2an 477 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( ( I  \ 
( `' ( x  e.  I  |->  X )
" ( _V  \  {  .0.  } ) ) )  X.  J ) )  ->  ( (
y  e.  J  |->  Y ) `  ( 2nd `  z ) )  e.  B )
60 evlslem4.b . . . . . . . 8  |-  B  =  ( Base `  R
)
61 evlslem4.t . . . . . . . 8  |-  .x.  =  ( .r `  R )
62 evlslem4.z . . . . . . . 8  |-  .0.  =  ( 0g `  R )
6360, 61, 62ringlz 17557 . . . . . . 7  |-  ( ( R  e.  Ring  /\  (
( y  e.  J  |->  Y ) `  ( 2nd `  z ) )  e.  B )  -> 
(  .0.  .x.  (
( y  e.  J  |->  Y ) `  ( 2nd `  z ) ) )  =  .0.  )
6455, 59, 63syl2anc 661 . . . . . 6  |-  ( (
ph  /\  z  e.  ( ( I  \ 
( `' ( x  e.  I  |->  X )
" ( _V  \  {  .0.  } ) ) )  X.  J ) )  ->  (  .0.  .x.  ( ( y  e.  J  |->  Y ) `  ( 2nd `  z ) ) )  =  .0.  )
6553, 64eqtrd 2445 . . . . 5  |-  ( (
ph  /\  z  e.  ( ( I  \ 
( `' ( x  e.  I  |->  X )
" ( _V  \  {  .0.  } ) ) )  X.  J ) )  ->  ( (
( x  e.  I  |->  X ) `  ( 1st `  z ) ) 
.x.  ( ( y  e.  J  |->  Y ) `
 ( 2nd `  z
) ) )  =  .0.  )
66 xp2nd 6817 . . . . . . . 8  |-  ( z  e.  ( I  X.  ( J  \  ( `' ( y  e.  J  |->  Y ) "
( _V  \  {  .0.  } ) ) ) )  ->  ( 2nd `  z )  e.  ( J  \  ( `' ( y  e.  J  |->  Y ) " ( _V  \  {  .0.  }
) ) ) )
67 id 23 . . . . . . . . 9  |-  ( ( y  e.  J  |->  Y ) : J --> B  -> 
( y  e.  J  |->  Y ) : J --> B )
68 ssid 3463 . . . . . . . . . 10  |-  ( `' ( y  e.  J  |->  Y ) " ( _V  \  {  .0.  }
) )  C_  ( `' ( y  e.  J  |->  Y ) "
( _V  \  {  .0.  } ) )
6968a1i 11 . . . . . . . . 9  |-  ( ( y  e.  J  |->  Y ) : J --> B  -> 
( `' ( y  e.  J  |->  Y )
" ( _V  \  {  .0.  } ) ) 
C_  ( `' ( y  e.  J  |->  Y ) " ( _V 
\  {  .0.  }
) ) )
7067, 69suppssrOLD 6001 . . . . . . . 8  |-  ( ( ( y  e.  J  |->  Y ) : J --> B  /\  ( 2nd `  z
)  e.  ( J 
\  ( `' ( y  e.  J  |->  Y ) " ( _V 
\  {  .0.  }
) ) ) )  ->  ( ( y  e.  J  |->  Y ) `
 ( 2nd `  z
) )  =  .0.  )
7156, 66, 70syl2an 477 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( I  X.  ( J  \  ( `' ( y  e.  J  |->  Y ) " ( _V 
\  {  .0.  }
) ) ) ) )  ->  ( (
y  e.  J  |->  Y ) `  ( 2nd `  z ) )  =  .0.  )
7271oveq2d 6296 . . . . . 6  |-  ( (
ph  /\  z  e.  ( I  X.  ( J  \  ( `' ( y  e.  J  |->  Y ) " ( _V 
\  {  .0.  }
) ) ) ) )  ->  ( (
( x  e.  I  |->  X ) `  ( 1st `  z ) ) 
.x.  ( ( y  e.  J  |->  Y ) `
 ( 2nd `  z
) ) )  =  ( ( ( x  e.  I  |->  X ) `
 ( 1st `  z
) )  .x.  .0.  ) )
7354adantr 465 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( I  X.  ( J  \  ( `' ( y  e.  J  |->  Y ) " ( _V 
\  {  .0.  }
) ) ) ) )  ->  R  e.  Ring )
74 xp1st 6816 . . . . . . . 8  |-  ( z  e.  ( I  X.  ( J  \  ( `' ( y  e.  J  |->  Y ) "
( _V  \  {  .0.  } ) ) ) )  ->  ( 1st `  z )  e.  I
)
75 ffvelrn 6009 . . . . . . . 8  |-  ( ( ( x  e.  I  |->  X ) : I --> B  /\  ( 1st `  z )  e.  I
)  ->  ( (
x  e.  I  |->  X ) `  ( 1st `  z ) )  e.  B )
7646, 74, 75syl2an 477 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( I  X.  ( J  \  ( `' ( y  e.  J  |->  Y ) " ( _V 
\  {  .0.  }
) ) ) ) )  ->  ( (
x  e.  I  |->  X ) `  ( 1st `  z ) )  e.  B )
7760, 61, 62ringrz 17558 . . . . . . 7  |-  ( ( R  e.  Ring  /\  (
( x  e.  I  |->  X ) `  ( 1st `  z ) )  e.  B )  -> 
( ( ( x  e.  I  |->  X ) `
 ( 1st `  z
) )  .x.  .0.  )  =  .0.  )
7873, 76, 77syl2anc 661 . . . . . 6  |-  ( (
ph  /\  z  e.  ( I  X.  ( J  \  ( `' ( y  e.  J  |->  Y ) " ( _V 
\  {  .0.  }
) ) ) ) )  ->  ( (
( x  e.  I  |->  X ) `  ( 1st `  z ) ) 
.x.  .0.  )  =  .0.  )
7972, 78eqtrd 2445 . . . . 5  |-  ( (
ph  /\  z  e.  ( I  X.  ( J  \  ( `' ( y  e.  J  |->  Y ) " ( _V 
\  {  .0.  }
) ) ) ) )  ->  ( (
( x  e.  I  |->  X ) `  ( 1st `  z ) ) 
.x.  ( ( y  e.  J  |->  Y ) `
 ( 2nd `  z
) ) )  =  .0.  )
8065, 79jaodan 788 . . . 4  |-  ( (
ph  /\  ( z  e.  ( ( I  \ 
( `' ( x  e.  I  |->  X )
" ( _V  \  {  .0.  } ) ) )  X.  J )  \/  z  e.  ( I  X.  ( J 
\  ( `' ( y  e.  J  |->  Y ) " ( _V 
\  {  .0.  }
) ) ) ) ) )  ->  (
( ( x  e.  I  |->  X ) `  ( 1st `  z ) )  .x.  ( ( y  e.  J  |->  Y ) `  ( 2nd `  z ) ) )  =  .0.  )
8145, 80sylan2b 475 . . 3  |-  ( (
ph  /\  z  e.  ( ( I  X.  J )  \  (
( `' ( x  e.  I  |->  X )
" ( _V  \  {  .0.  } ) )  X.  ( `' ( y  e.  J  |->  Y ) " ( _V 
\  {  .0.  }
) ) ) ) )  ->  ( (
( x  e.  I  |->  X ) `  ( 1st `  z ) ) 
.x.  ( ( y  e.  J  |->  Y ) `
 ( 2nd `  z
) ) )  =  .0.  )
8281suppss2OLD 6513 . 2  |-  ( ph  ->  ( `' ( z  e.  ( I  X.  J )  |->  ( ( ( x  e.  I  |->  X ) `  ( 1st `  z ) ) 
.x.  ( ( y  e.  J  |->  Y ) `
 ( 2nd `  z
) ) ) )
" ( _V  \  {  .0.  } ) ) 
C_  ( ( `' ( x  e.  I  |->  X ) " ( _V  \  {  .0.  }
) )  X.  ( `' ( y  e.  J  |->  Y ) "
( _V  \  {  .0.  } ) ) ) )
8341, 82eqsstrd 3478 1  |-  ( ph  ->  ( `' ( x  e.  I ,  y  e.  J  |->  ( X 
.x.  Y ) )
" ( _V  \  {  .0.  } ) ) 
C_  ( ( `' ( x  e.  I  |->  X ) " ( _V  \  {  .0.  }
) )  X.  ( `' ( y  e.  J  |->  Y ) "
( _V  \  {  .0.  } ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 368    /\ wa 369    /\ w3a 976    = wceq 1407    e. wcel 1844   _Vcvv 3061    \ cdif 3413    u. cun 3414    C_ wss 3416   {csn 3974   <.cop 3980    |-> cmpt 4455    X. cxp 4823   `'ccnv 4824   "cima 4828   -->wf 5567   ` cfv 5571  (class class class)co 6280    |-> cmpt2 6282   1stc1st 6784   2ndc2nd 6785   Basecbs 14843   .rcmulr 14912   0gc0g 15056   Ringcrg 17520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1641  ax-4 1654  ax-5 1727  ax-6 1773  ax-7 1816  ax-8 1846  ax-9 1848  ax-10 1863  ax-11 1868  ax-12 1880  ax-13 2028  ax-ext 2382  ax-rep 4509  ax-sep 4519  ax-nul 4527  ax-pow 4574  ax-pr 4632  ax-un 6576  ax-cnex 9580  ax-resscn 9581  ax-1cn 9582  ax-icn 9583  ax-addcl 9584  ax-addrcl 9585  ax-mulcl 9586  ax-mulrcl 9587  ax-mulcom 9588  ax-addass 9589  ax-mulass 9590  ax-distr 9591  ax-i2m1 9592  ax-1ne0 9593  ax-1rid 9594  ax-rnegex 9595  ax-rrecex 9596  ax-cnre 9597  ax-pre-lttri 9598  ax-pre-lttrn 9599  ax-pre-ltadd 9600  ax-pre-mulgt0 9601
This theorem depends on definitions:  df-bi 187  df-or 370  df-an 371  df-3or 977  df-3an 978  df-tru 1410  df-ex 1636  df-nf 1640  df-sb 1766  df-eu 2244  df-mo 2245  df-clab 2390  df-cleq 2396  df-clel 2399  df-nfc 2554  df-ne 2602  df-nel 2603  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3063  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-pss 3432  df-nul 3741  df-if 3888  df-pw 3959  df-sn 3975  df-pr 3977  df-tp 3979  df-op 3981  df-uni 4194  df-iun 4275  df-br 4398  df-opab 4456  df-mpt 4457  df-tr 4492  df-eprel 4736  df-id 4740  df-po 4746  df-so 4747  df-fr 4784  df-we 4786  df-xp 4831  df-rel 4832  df-cnv 4833  df-co 4834  df-dm 4835  df-rn 4836  df-res 4837  df-ima 4838  df-pred 5369  df-ord 5415  df-on 5416  df-lim 5417  df-suc 5418  df-iota 5535  df-fun 5573  df-fn 5574  df-f 5575  df-f1 5576  df-fo 5577  df-f1o 5578  df-fv 5579  df-riota 6242  df-ov 6283  df-oprab 6284  df-mpt2 6285  df-om 6686  df-1st 6786  df-2nd 6787  df-wrecs 7015  df-recs 7077  df-rdg 7115  df-er 7350  df-en 7557  df-dom 7558  df-sdom 7559  df-pnf 9662  df-mnf 9663  df-xr 9664  df-ltxr 9665  df-le 9666  df-sub 9845  df-neg 9846  df-nn 10579  df-2 10637  df-ndx 14846  df-slot 14847  df-base 14848  df-sets 14849  df-plusg 14924  df-0g 15058  df-mgm 16198  df-sgrp 16237  df-mnd 16247  df-grp 16383  df-minusg 16384  df-mgp 17464  df-ring 17522
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator