MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evls1scasrng Structured version   Unicode version

Theorem evls1scasrng 17884
Description: The evaluation of a scalar of a subring yields the same result as evaluated as a scalar over the ring itself. (Contributed by AV, 13-Sep-2019.)
Hypotheses
Ref Expression
evls1scasrng.q  |-  Q  =  ( S evalSub1  R )
evls1scasrng.o  |-  O  =  (eval1 `  S )
evls1scasrng.w  |-  W  =  (Poly1 `  U )
evls1scasrng.u  |-  U  =  ( Ss  R )
evls1scasrng.p  |-  P  =  (Poly1 `  S )
evls1scasrng.b  |-  B  =  ( Base `  S
)
evls1scasrng.a  |-  A  =  (algSc `  W )
evls1scasrng.c  |-  C  =  (algSc `  P )
evls1scasrng.s  |-  ( ph  ->  S  e.  CRing )
evls1scasrng.r  |-  ( ph  ->  R  e.  (SubRing `  S
) )
evls1scasrng.x  |-  ( ph  ->  X  e.  R )
Assertion
Ref Expression
evls1scasrng  |-  ( ph  ->  ( Q `  ( A `  X )
)  =  ( O `
 ( C `  X ) ) )

Proof of Theorem evls1scasrng
StepHypRef Expression
1 evls1scasrng.c . . . . . 6  |-  C  =  (algSc `  P )
2 evls1scasrng.p . . . . . . . 8  |-  P  =  (Poly1 `  S )
3 evls1scasrng.s . . . . . . . . . 10  |-  ( ph  ->  S  e.  CRing )
4 evls1scasrng.b . . . . . . . . . . . 12  |-  B  =  ( Base `  S
)
54ressid 14337 . . . . . . . . . . 11  |-  ( S  e.  CRing  ->  ( Ss  B
)  =  S )
65eqcomd 2459 . . . . . . . . . 10  |-  ( S  e.  CRing  ->  S  =  ( Ss  B ) )
73, 6syl 16 . . . . . . . . 9  |-  ( ph  ->  S  =  ( Ss  B ) )
87fveq2d 5795 . . . . . . . 8  |-  ( ph  ->  (Poly1 `  S )  =  (Poly1 `  ( Ss  B ) ) )
92, 8syl5eq 2504 . . . . . . 7  |-  ( ph  ->  P  =  (Poly1 `  ( Ss  B ) ) )
109fveq2d 5795 . . . . . 6  |-  ( ph  ->  (algSc `  P )  =  (algSc `  (Poly1 `  ( Ss  B ) ) ) )
111, 10syl5eq 2504 . . . . 5  |-  ( ph  ->  C  =  (algSc `  (Poly1 `  ( Ss  B ) ) ) )
1211fveq1d 5793 . . . 4  |-  ( ph  ->  ( C `  X
)  =  ( (algSc `  (Poly1 `  ( Ss  B ) ) ) `  X
) )
1312fveq2d 5795 . . 3  |-  ( ph  ->  ( ( S evalSub1  B ) `
 ( C `  X ) )  =  ( ( S evalSub1  B ) `
 ( (algSc `  (Poly1 `  ( Ss  B ) ) ) `
 X ) ) )
14 eqid 2451 . . . 4  |-  ( S evalSub1  B )  =  ( S evalSub1  B )
15 eqid 2451 . . . 4  |-  (Poly1 `  ( Ss  B ) )  =  (Poly1 `  ( Ss  B ) )
16 eqid 2451 . . . 4  |-  ( Ss  B )  =  ( Ss  B )
17 eqid 2451 . . . 4  |-  (algSc `  (Poly1 `  ( Ss  B ) ) )  =  (algSc `  (Poly1 `  ( Ss  B ) ) )
18 crngrng 16763 . . . . 5  |-  ( S  e.  CRing  ->  S  e.  Ring )
194subrgid 16975 . . . . 5  |-  ( S  e.  Ring  ->  B  e.  (SubRing `  S )
)
203, 18, 193syl 20 . . . 4  |-  ( ph  ->  B  e.  (SubRing `  S
) )
21 evls1scasrng.r . . . . . 6  |-  ( ph  ->  R  e.  (SubRing `  S
) )
224subrgss 16974 . . . . . 6  |-  ( R  e.  (SubRing `  S
)  ->  R  C_  B
)
2321, 22syl 16 . . . . 5  |-  ( ph  ->  R  C_  B )
24 evls1scasrng.x . . . . 5  |-  ( ph  ->  X  e.  R )
2523, 24sseldd 3457 . . . 4  |-  ( ph  ->  X  e.  B )
2614, 15, 16, 4, 17, 3, 20, 25evls1sca 17869 . . 3  |-  ( ph  ->  ( ( S evalSub1  B ) `
 ( (algSc `  (Poly1 `  ( Ss  B ) ) ) `
 X ) )  =  ( B  X.  { X } ) )
2713, 26eqtrd 2492 . 2  |-  ( ph  ->  ( ( S evalSub1  B ) `
 ( C `  X ) )  =  ( B  X.  { X } ) )
28 evls1scasrng.o . . . . 5  |-  O  =  (eval1 `  S )
2928, 4evl1fval1 17876 . . . 4  |-  O  =  ( S evalSub1  B )
3029a1i 11 . . 3  |-  ( ph  ->  O  =  ( S evalSub1  B ) )
3130fveq1d 5793 . 2  |-  ( ph  ->  ( O `  ( C `  X )
)  =  ( ( S evalSub1  B ) `  ( C `  X )
) )
32 evls1scasrng.q . . 3  |-  Q  =  ( S evalSub1  R )
33 evls1scasrng.w . . 3  |-  W  =  (Poly1 `  U )
34 evls1scasrng.u . . 3  |-  U  =  ( Ss  R )
35 evls1scasrng.a . . 3  |-  A  =  (algSc `  W )
3632, 33, 34, 4, 35, 3, 21, 24evls1sca 17869 . 2  |-  ( ph  ->  ( Q `  ( A `  X )
)  =  ( B  X.  { X }
) )
3727, 31, 363eqtr4rd 2503 1  |-  ( ph  ->  ( Q `  ( A `  X )
)  =  ( O `
 ( C `  X ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1370    e. wcel 1758    C_ wss 3428   {csn 3977    X. cxp 4938   ` cfv 5518  (class class class)co 6192   Basecbs 14278   ↾s cress 14279   Ringcrg 16753   CRingccrg 16754  SubRingcsubrg 16969  algSccascl 17491  Poly1cpl1 17742   evalSub1 ces1 17859  eval1ce1 17860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4503  ax-sep 4513  ax-nul 4521  ax-pow 4570  ax-pr 4631  ax-un 6474  ax-inf2 7950  ax-cnex 9441  ax-resscn 9442  ax-1cn 9443  ax-icn 9444  ax-addcl 9445  ax-addrcl 9446  ax-mulcl 9447  ax-mulrcl 9448  ax-mulcom 9449  ax-addass 9450  ax-mulass 9451  ax-distr 9452  ax-i2m1 9453  ax-1ne0 9454  ax-1rid 9455  ax-rnegex 9456  ax-rrecex 9457  ax-cnre 9458  ax-pre-lttri 9459  ax-pre-lttrn 9460  ax-pre-ltadd 9461  ax-pre-mulgt0 9462
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rmo 2803  df-rab 2804  df-v 3072  df-sbc 3287  df-csb 3389  df-dif 3431  df-un 3433  df-in 3435  df-ss 3442  df-pss 3444  df-nul 3738  df-if 3892  df-pw 3962  df-sn 3978  df-pr 3980  df-tp 3982  df-op 3984  df-uni 4192  df-int 4229  df-iun 4273  df-iin 4274  df-br 4393  df-opab 4451  df-mpt 4452  df-tr 4486  df-eprel 4732  df-id 4736  df-po 4741  df-so 4742  df-fr 4779  df-se 4780  df-we 4781  df-ord 4822  df-on 4823  df-lim 4824  df-suc 4825  df-xp 4946  df-rel 4947  df-cnv 4948  df-co 4949  df-dm 4950  df-rn 4951  df-res 4952  df-ima 4953  df-iota 5481  df-fun 5520  df-fn 5521  df-f 5522  df-f1 5523  df-fo 5524  df-f1o 5525  df-fv 5526  df-isom 5527  df-riota 6153  df-ov 6195  df-oprab 6196  df-mpt2 6197  df-of 6422  df-ofr 6423  df-om 6579  df-1st 6679  df-2nd 6680  df-supp 6793  df-recs 6934  df-rdg 6968  df-1o 7022  df-2o 7023  df-oadd 7026  df-er 7203  df-map 7318  df-pm 7319  df-ixp 7366  df-en 7413  df-dom 7414  df-sdom 7415  df-fin 7416  df-fsupp 7724  df-sup 7794  df-oi 7827  df-card 8212  df-pnf 9523  df-mnf 9524  df-xr 9525  df-ltxr 9526  df-le 9527  df-sub 9700  df-neg 9701  df-nn 10426  df-2 10483  df-3 10484  df-4 10485  df-5 10486  df-6 10487  df-7 10488  df-8 10489  df-9 10490  df-10 10491  df-n0 10683  df-z 10750  df-dec 10859  df-uz 10965  df-fz 11541  df-fzo 11652  df-seq 11910  df-hash 12207  df-struct 14280  df-ndx 14281  df-slot 14282  df-base 14283  df-sets 14284  df-ress 14285  df-plusg 14355  df-mulr 14356  df-sca 14358  df-vsca 14359  df-ip 14360  df-tset 14361  df-ple 14362  df-ds 14364  df-hom 14366  df-cco 14367  df-0g 14484  df-gsum 14485  df-prds 14490  df-pws 14492  df-mre 14628  df-mrc 14629  df-acs 14631  df-mnd 15519  df-mhm 15568  df-submnd 15569  df-grp 15649  df-minusg 15650  df-sbg 15651  df-mulg 15652  df-subg 15782  df-ghm 15849  df-cntz 15939  df-cmn 16385  df-abl 16386  df-mgp 16699  df-ur 16711  df-srg 16715  df-rng 16755  df-cring 16756  df-rnghom 16914  df-subrg 16971  df-lmod 17058  df-lss 17122  df-lsp 17161  df-assa 17492  df-asp 17493  df-ascl 17494  df-psr 17531  df-mvr 17532  df-mpl 17533  df-opsr 17535  df-evls 17697  df-evl 17698  df-psr1 17745  df-ply1 17747  df-evls1 17861  df-evl1 17862
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator