MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evlfval Structured version   Unicode version

Theorem evlfval 15019
Description: Value of the evaluation functor. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
evlfval.e  |-  E  =  ( C evalF  D )
evlfval.c  |-  ( ph  ->  C  e.  Cat )
evlfval.d  |-  ( ph  ->  D  e.  Cat )
evlfval.b  |-  B  =  ( Base `  C
)
evlfval.h  |-  H  =  ( Hom  `  C
)
evlfval.o  |-  .x.  =  (comp `  D )
evlfval.n  |-  N  =  ( C Nat  D )
Assertion
Ref Expression
evlfval  |-  ( ph  ->  E  =  <. (
f  e.  ( C 
Func  D ) ,  x  e.  B  |->  ( ( 1st `  f ) `
 x ) ) ,  ( x  e.  ( ( C  Func  D )  X.  B ) ,  y  e.  ( ( C  Func  D
)  X.  B ) 
|->  [_ ( 1st `  x
)  /  m ]_ [_ ( 1st `  y
)  /  n ]_ ( a  e.  ( m N n ) ,  g  e.  ( ( 2nd `  x
) H ( 2nd `  y ) )  |->  ( ( a `  ( 2nd `  y ) ) ( <. ( ( 1st `  m ) `  ( 2nd `  x ) ) ,  ( ( 1st `  m ) `  ( 2nd `  y ) )
>.  .x.  ( ( 1st `  n ) `  ( 2nd `  y ) ) ) ( ( ( 2nd `  x ) ( 2nd `  m
) ( 2nd `  y
) ) `  g
) ) ) )
>. )
Distinct variable groups:    f, a,
g, m, n, x, y, C    D, a,
f, g, m, n, x, y    g, H, m, n, x, y    N, a, g, m, n, x, y    ph, a,
f, g, m, n, x, y    .x. , a,
g, m, n, x, y    x, B, y
Allowed substitution hints:    B( f, g, m, n, a)    .x. ( f)    E( x, y, f, g, m, n, a)    H( f, a)    N( f)

Proof of Theorem evlfval
Dummy variables  c 
d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evlfval.e . 2  |-  E  =  ( C evalF  D )
2 df-evlf 15015 . . . 4  |- evalF  =  ( c  e. 
Cat ,  d  e.  Cat  |->  <. ( f  e.  ( c  Func  d
) ,  x  e.  ( Base `  c
)  |->  ( ( 1st `  f ) `  x
) ) ,  ( x  e.  ( ( c  Func  d )  X.  ( Base `  c
) ) ,  y  e.  ( ( c 
Func  d )  X.  ( Base `  c
) )  |->  [_ ( 1st `  x )  /  m ]_ [_ ( 1st `  y )  /  n ]_ ( a  e.  ( m ( c Nat  d
) n ) ,  g  e.  ( ( 2nd `  x ) ( Hom  `  c
) ( 2nd `  y
) )  |->  ( ( a `  ( 2nd `  y ) ) (
<. ( ( 1st `  m
) `  ( 2nd `  x ) ) ,  ( ( 1st `  m
) `  ( 2nd `  y ) ) >.
(comp `  d )
( ( 1st `  n
) `  ( 2nd `  y ) ) ) ( ( ( 2nd `  x ) ( 2nd `  m ) ( 2nd `  y ) ) `  g ) ) ) ) >. )
32a1i 11 . . 3  |-  ( ph  -> evalF  =  ( c  e.  Cat ,  d  e.  Cat  |->  <.
( f  e.  ( c  Func  d ) ,  x  e.  ( Base `  c )  |->  ( ( 1st `  f
) `  x )
) ,  ( x  e.  ( ( c 
Func  d )  X.  ( Base `  c
) ) ,  y  e.  ( ( c 
Func  d )  X.  ( Base `  c
) )  |->  [_ ( 1st `  x )  /  m ]_ [_ ( 1st `  y )  /  n ]_ ( a  e.  ( m ( c Nat  d
) n ) ,  g  e.  ( ( 2nd `  x ) ( Hom  `  c
) ( 2nd `  y
) )  |->  ( ( a `  ( 2nd `  y ) ) (
<. ( ( 1st `  m
) `  ( 2nd `  x ) ) ,  ( ( 1st `  m
) `  ( 2nd `  y ) ) >.
(comp `  d )
( ( 1st `  n
) `  ( 2nd `  y ) ) ) ( ( ( 2nd `  x ) ( 2nd `  m ) ( 2nd `  y ) ) `  g ) ) ) ) >. ) )
4 simprl 755 . . . . . 6  |-  ( (
ph  /\  ( c  =  C  /\  d  =  D ) )  -> 
c  =  C )
5 simprr 756 . . . . . 6  |-  ( (
ph  /\  ( c  =  C  /\  d  =  D ) )  -> 
d  =  D )
64, 5oveq12d 6104 . . . . 5  |-  ( (
ph  /\  ( c  =  C  /\  d  =  D ) )  -> 
( c  Func  d
)  =  ( C 
Func  D ) )
74fveq2d 5690 . . . . . 6  |-  ( (
ph  /\  ( c  =  C  /\  d  =  D ) )  -> 
( Base `  c )  =  ( Base `  C
) )
8 evlfval.b . . . . . 6  |-  B  =  ( Base `  C
)
97, 8syl6eqr 2488 . . . . 5  |-  ( (
ph  /\  ( c  =  C  /\  d  =  D ) )  -> 
( Base `  c )  =  B )
10 eqidd 2439 . . . . 5  |-  ( (
ph  /\  ( c  =  C  /\  d  =  D ) )  -> 
( ( 1st `  f
) `  x )  =  ( ( 1st `  f ) `  x
) )
116, 9, 10mpt2eq123dv 6143 . . . 4  |-  ( (
ph  /\  ( c  =  C  /\  d  =  D ) )  -> 
( f  e.  ( c  Func  d ) ,  x  e.  ( Base `  c )  |->  ( ( 1st `  f
) `  x )
)  =  ( f  e.  ( C  Func  D ) ,  x  e.  B  |->  ( ( 1st `  f ) `  x
) ) )
126, 9xpeq12d 4860 . . . . 5  |-  ( (
ph  /\  ( c  =  C  /\  d  =  D ) )  -> 
( ( c  Func  d )  X.  ( Base `  c ) )  =  ( ( C  Func  D )  X.  B ) )
134, 5oveq12d 6104 . . . . . . . . . 10  |-  ( (
ph  /\  ( c  =  C  /\  d  =  D ) )  -> 
( c Nat  d )  =  ( C Nat  D
) )
14 evlfval.n . . . . . . . . . 10  |-  N  =  ( C Nat  D )
1513, 14syl6eqr 2488 . . . . . . . . 9  |-  ( (
ph  /\  ( c  =  C  /\  d  =  D ) )  -> 
( c Nat  d )  =  N )
1615oveqd 6103 . . . . . . . 8  |-  ( (
ph  /\  ( c  =  C  /\  d  =  D ) )  -> 
( m ( c Nat  d ) n )  =  ( m N n ) )
174fveq2d 5690 . . . . . . . . . 10  |-  ( (
ph  /\  ( c  =  C  /\  d  =  D ) )  -> 
( Hom  `  c )  =  ( Hom  `  C
) )
18 evlfval.h . . . . . . . . . 10  |-  H  =  ( Hom  `  C
)
1917, 18syl6eqr 2488 . . . . . . . . 9  |-  ( (
ph  /\  ( c  =  C  /\  d  =  D ) )  -> 
( Hom  `  c )  =  H )
2019oveqd 6103 . . . . . . . 8  |-  ( (
ph  /\  ( c  =  C  /\  d  =  D ) )  -> 
( ( 2nd `  x
) ( Hom  `  c
) ( 2nd `  y
) )  =  ( ( 2nd `  x
) H ( 2nd `  y ) ) )
215fveq2d 5690 . . . . . . . . . . 11  |-  ( (
ph  /\  ( c  =  C  /\  d  =  D ) )  -> 
(comp `  d )  =  (comp `  D )
)
22 evlfval.o . . . . . . . . . . 11  |-  .x.  =  (comp `  D )
2321, 22syl6eqr 2488 . . . . . . . . . 10  |-  ( (
ph  /\  ( c  =  C  /\  d  =  D ) )  -> 
(comp `  d )  =  .x.  )
2423oveqd 6103 . . . . . . . . 9  |-  ( (
ph  /\  ( c  =  C  /\  d  =  D ) )  -> 
( <. ( ( 1st `  m ) `  ( 2nd `  x ) ) ,  ( ( 1st `  m ) `  ( 2nd `  y ) )
>. (comp `  d )
( ( 1st `  n
) `  ( 2nd `  y ) ) )  =  ( <. (
( 1st `  m
) `  ( 2nd `  x ) ) ,  ( ( 1st `  m
) `  ( 2nd `  y ) ) >.  .x.  ( ( 1st `  n
) `  ( 2nd `  y ) ) ) )
2524oveqd 6103 . . . . . . . 8  |-  ( (
ph  /\  ( c  =  C  /\  d  =  D ) )  -> 
( ( a `  ( 2nd `  y ) ) ( <. (
( 1st `  m
) `  ( 2nd `  x ) ) ,  ( ( 1st `  m
) `  ( 2nd `  y ) ) >.
(comp `  d )
( ( 1st `  n
) `  ( 2nd `  y ) ) ) ( ( ( 2nd `  x ) ( 2nd `  m ) ( 2nd `  y ) ) `  g ) )  =  ( ( a `  ( 2nd `  y ) ) ( <. (
( 1st `  m
) `  ( 2nd `  x ) ) ,  ( ( 1st `  m
) `  ( 2nd `  y ) ) >.  .x.  ( ( 1st `  n
) `  ( 2nd `  y ) ) ) ( ( ( 2nd `  x ) ( 2nd `  m ) ( 2nd `  y ) ) `  g ) ) )
2616, 20, 25mpt2eq123dv 6143 . . . . . . 7  |-  ( (
ph  /\  ( c  =  C  /\  d  =  D ) )  -> 
( a  e.  ( m ( c Nat  d
) n ) ,  g  e.  ( ( 2nd `  x ) ( Hom  `  c
) ( 2nd `  y
) )  |->  ( ( a `  ( 2nd `  y ) ) (
<. ( ( 1st `  m
) `  ( 2nd `  x ) ) ,  ( ( 1st `  m
) `  ( 2nd `  y ) ) >.
(comp `  d )
( ( 1st `  n
) `  ( 2nd `  y ) ) ) ( ( ( 2nd `  x ) ( 2nd `  m ) ( 2nd `  y ) ) `  g ) ) )  =  ( a  e.  ( m N n ) ,  g  e.  ( ( 2nd `  x
) H ( 2nd `  y ) )  |->  ( ( a `  ( 2nd `  y ) ) ( <. ( ( 1st `  m ) `  ( 2nd `  x ) ) ,  ( ( 1st `  m ) `  ( 2nd `  y ) )
>.  .x.  ( ( 1st `  n ) `  ( 2nd `  y ) ) ) ( ( ( 2nd `  x ) ( 2nd `  m
) ( 2nd `  y
) ) `  g
) ) ) )
2726csbeq2dv 3682 . . . . . 6  |-  ( (
ph  /\  ( c  =  C  /\  d  =  D ) )  ->  [_ ( 1st `  y
)  /  n ]_ ( a  e.  ( m ( c Nat  d
) n ) ,  g  e.  ( ( 2nd `  x ) ( Hom  `  c
) ( 2nd `  y
) )  |->  ( ( a `  ( 2nd `  y ) ) (
<. ( ( 1st `  m
) `  ( 2nd `  x ) ) ,  ( ( 1st `  m
) `  ( 2nd `  y ) ) >.
(comp `  d )
( ( 1st `  n
) `  ( 2nd `  y ) ) ) ( ( ( 2nd `  x ) ( 2nd `  m ) ( 2nd `  y ) ) `  g ) ) )  =  [_ ( 1st `  y )  /  n ]_ ( a  e.  ( m N n ) ,  g  e.  ( ( 2nd `  x
) H ( 2nd `  y ) )  |->  ( ( a `  ( 2nd `  y ) ) ( <. ( ( 1st `  m ) `  ( 2nd `  x ) ) ,  ( ( 1st `  m ) `  ( 2nd `  y ) )
>.  .x.  ( ( 1st `  n ) `  ( 2nd `  y ) ) ) ( ( ( 2nd `  x ) ( 2nd `  m
) ( 2nd `  y
) ) `  g
) ) ) )
2827csbeq2dv 3682 . . . . 5  |-  ( (
ph  /\  ( c  =  C  /\  d  =  D ) )  ->  [_ ( 1st `  x
)  /  m ]_ [_ ( 1st `  y
)  /  n ]_ ( a  e.  ( m ( c Nat  d
) n ) ,  g  e.  ( ( 2nd `  x ) ( Hom  `  c
) ( 2nd `  y
) )  |->  ( ( a `  ( 2nd `  y ) ) (
<. ( ( 1st `  m
) `  ( 2nd `  x ) ) ,  ( ( 1st `  m
) `  ( 2nd `  y ) ) >.
(comp `  d )
( ( 1st `  n
) `  ( 2nd `  y ) ) ) ( ( ( 2nd `  x ) ( 2nd `  m ) ( 2nd `  y ) ) `  g ) ) )  =  [_ ( 1st `  x )  /  m ]_ [_ ( 1st `  y
)  /  n ]_ ( a  e.  ( m N n ) ,  g  e.  ( ( 2nd `  x
) H ( 2nd `  y ) )  |->  ( ( a `  ( 2nd `  y ) ) ( <. ( ( 1st `  m ) `  ( 2nd `  x ) ) ,  ( ( 1st `  m ) `  ( 2nd `  y ) )
>.  .x.  ( ( 1st `  n ) `  ( 2nd `  y ) ) ) ( ( ( 2nd `  x ) ( 2nd `  m
) ( 2nd `  y
) ) `  g
) ) ) )
2912, 12, 28mpt2eq123dv 6143 . . . 4  |-  ( (
ph  /\  ( c  =  C  /\  d  =  D ) )  -> 
( x  e.  ( ( c  Func  d
)  X.  ( Base `  c ) ) ,  y  e.  ( ( c  Func  d )  X.  ( Base `  c
) )  |->  [_ ( 1st `  x )  /  m ]_ [_ ( 1st `  y )  /  n ]_ ( a  e.  ( m ( c Nat  d
) n ) ,  g  e.  ( ( 2nd `  x ) ( Hom  `  c
) ( 2nd `  y
) )  |->  ( ( a `  ( 2nd `  y ) ) (
<. ( ( 1st `  m
) `  ( 2nd `  x ) ) ,  ( ( 1st `  m
) `  ( 2nd `  y ) ) >.
(comp `  d )
( ( 1st `  n
) `  ( 2nd `  y ) ) ) ( ( ( 2nd `  x ) ( 2nd `  m ) ( 2nd `  y ) ) `  g ) ) ) )  =  ( x  e.  ( ( C 
Func  D )  X.  B
) ,  y  e.  ( ( C  Func  D )  X.  B ) 
|->  [_ ( 1st `  x
)  /  m ]_ [_ ( 1st `  y
)  /  n ]_ ( a  e.  ( m N n ) ,  g  e.  ( ( 2nd `  x
) H ( 2nd `  y ) )  |->  ( ( a `  ( 2nd `  y ) ) ( <. ( ( 1st `  m ) `  ( 2nd `  x ) ) ,  ( ( 1st `  m ) `  ( 2nd `  y ) )
>.  .x.  ( ( 1st `  n ) `  ( 2nd `  y ) ) ) ( ( ( 2nd `  x ) ( 2nd `  m
) ( 2nd `  y
) ) `  g
) ) ) ) )
3011, 29opeq12d 4062 . . 3  |-  ( (
ph  /\  ( c  =  C  /\  d  =  D ) )  ->  <. ( f  e.  ( c  Func  d ) ,  x  e.  ( Base `  c )  |->  ( ( 1st `  f
) `  x )
) ,  ( x  e.  ( ( c 
Func  d )  X.  ( Base `  c
) ) ,  y  e.  ( ( c 
Func  d )  X.  ( Base `  c
) )  |->  [_ ( 1st `  x )  /  m ]_ [_ ( 1st `  y )  /  n ]_ ( a  e.  ( m ( c Nat  d
) n ) ,  g  e.  ( ( 2nd `  x ) ( Hom  `  c
) ( 2nd `  y
) )  |->  ( ( a `  ( 2nd `  y ) ) (
<. ( ( 1st `  m
) `  ( 2nd `  x ) ) ,  ( ( 1st `  m
) `  ( 2nd `  y ) ) >.
(comp `  d )
( ( 1st `  n
) `  ( 2nd `  y ) ) ) ( ( ( 2nd `  x ) ( 2nd `  m ) ( 2nd `  y ) ) `  g ) ) ) ) >.  =  <. ( f  e.  ( C 
Func  D ) ,  x  e.  B  |->  ( ( 1st `  f ) `
 x ) ) ,  ( x  e.  ( ( C  Func  D )  X.  B ) ,  y  e.  ( ( C  Func  D
)  X.  B ) 
|->  [_ ( 1st `  x
)  /  m ]_ [_ ( 1st `  y
)  /  n ]_ ( a  e.  ( m N n ) ,  g  e.  ( ( 2nd `  x
) H ( 2nd `  y ) )  |->  ( ( a `  ( 2nd `  y ) ) ( <. ( ( 1st `  m ) `  ( 2nd `  x ) ) ,  ( ( 1st `  m ) `  ( 2nd `  y ) )
>.  .x.  ( ( 1st `  n ) `  ( 2nd `  y ) ) ) ( ( ( 2nd `  x ) ( 2nd `  m
) ( 2nd `  y
) ) `  g
) ) ) )
>. )
31 evlfval.c . . 3  |-  ( ph  ->  C  e.  Cat )
32 evlfval.d . . 3  |-  ( ph  ->  D  e.  Cat )
33 opex 4551 . . . 4  |-  <. (
f  e.  ( C 
Func  D ) ,  x  e.  B  |->  ( ( 1st `  f ) `
 x ) ) ,  ( x  e.  ( ( C  Func  D )  X.  B ) ,  y  e.  ( ( C  Func  D
)  X.  B ) 
|->  [_ ( 1st `  x
)  /  m ]_ [_ ( 1st `  y
)  /  n ]_ ( a  e.  ( m N n ) ,  g  e.  ( ( 2nd `  x
) H ( 2nd `  y ) )  |->  ( ( a `  ( 2nd `  y ) ) ( <. ( ( 1st `  m ) `  ( 2nd `  x ) ) ,  ( ( 1st `  m ) `  ( 2nd `  y ) )
>.  .x.  ( ( 1st `  n ) `  ( 2nd `  y ) ) ) ( ( ( 2nd `  x ) ( 2nd `  m
) ( 2nd `  y
) ) `  g
) ) ) )
>.  e.  _V
3433a1i 11 . . 3  |-  ( ph  -> 
<. ( f  e.  ( C  Func  D ) ,  x  e.  B  |->  ( ( 1st `  f
) `  x )
) ,  ( x  e.  ( ( C 
Func  D )  X.  B
) ,  y  e.  ( ( C  Func  D )  X.  B ) 
|->  [_ ( 1st `  x
)  /  m ]_ [_ ( 1st `  y
)  /  n ]_ ( a  e.  ( m N n ) ,  g  e.  ( ( 2nd `  x
) H ( 2nd `  y ) )  |->  ( ( a `  ( 2nd `  y ) ) ( <. ( ( 1st `  m ) `  ( 2nd `  x ) ) ,  ( ( 1st `  m ) `  ( 2nd `  y ) )
>.  .x.  ( ( 1st `  n ) `  ( 2nd `  y ) ) ) ( ( ( 2nd `  x ) ( 2nd `  m
) ( 2nd `  y
) ) `  g
) ) ) )
>.  e.  _V )
353, 30, 31, 32, 34ovmpt2d 6213 . 2  |-  ( ph  ->  ( C evalF  D )  =  <. ( f  e.  ( C 
Func  D ) ,  x  e.  B  |->  ( ( 1st `  f ) `
 x ) ) ,  ( x  e.  ( ( C  Func  D )  X.  B ) ,  y  e.  ( ( C  Func  D
)  X.  B ) 
|->  [_ ( 1st `  x
)  /  m ]_ [_ ( 1st `  y
)  /  n ]_ ( a  e.  ( m N n ) ,  g  e.  ( ( 2nd `  x
) H ( 2nd `  y ) )  |->  ( ( a `  ( 2nd `  y ) ) ( <. ( ( 1st `  m ) `  ( 2nd `  x ) ) ,  ( ( 1st `  m ) `  ( 2nd `  y ) )
>.  .x.  ( ( 1st `  n ) `  ( 2nd `  y ) ) ) ( ( ( 2nd `  x ) ( 2nd `  m
) ( 2nd `  y
) ) `  g
) ) ) )
>. )
361, 35syl5eq 2482 1  |-  ( ph  ->  E  =  <. (
f  e.  ( C 
Func  D ) ,  x  e.  B  |->  ( ( 1st `  f ) `
 x ) ) ,  ( x  e.  ( ( C  Func  D )  X.  B ) ,  y  e.  ( ( C  Func  D
)  X.  B ) 
|->  [_ ( 1st `  x
)  /  m ]_ [_ ( 1st `  y
)  /  n ]_ ( a  e.  ( m N n ) ,  g  e.  ( ( 2nd `  x
) H ( 2nd `  y ) )  |->  ( ( a `  ( 2nd `  y ) ) ( <. ( ( 1st `  m ) `  ( 2nd `  x ) ) ,  ( ( 1st `  m ) `  ( 2nd `  y ) )
>.  .x.  ( ( 1st `  n ) `  ( 2nd `  y ) ) ) ( ( ( 2nd `  x ) ( 2nd `  m
) ( 2nd `  y
) ) `  g
) ) ) )
>. )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756   _Vcvv 2967   [_csb 3283   <.cop 3878    X. cxp 4833   ` cfv 5413  (class class class)co 6086    e. cmpt2 6088   1stc1st 6570   2ndc2nd 6571   Basecbs 14166   Hom chom 14241  compcco 14242   Catccat 14594    Func cfunc 14756   Nat cnat 14843   evalF cevlf 15011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-sep 4408  ax-nul 4416  ax-pr 4526
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2715  df-rex 2716  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-nul 3633  df-if 3787  df-sn 3873  df-pr 3875  df-op 3879  df-uni 4087  df-br 4288  df-opab 4346  df-id 4631  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-iota 5376  df-fun 5415  df-fv 5421  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-evlf 15015
This theorem is referenced by:  evlf2  15020  evlf1  15022  evlfcl  15024
  Copyright terms: Public domain W3C validator