Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  evl1rhm Structured version   Unicode version

Theorem evl1rhm 18242
 Description: Polynomial evaluation is a homomorphism (into the product ring). (Contributed by Mario Carneiro, 12-Jun-2015.) (Proof shortened by AV, 13-Sep-2019.)
Hypotheses
Ref Expression
evl1rhm.q eval1
evl1rhm.w Poly1
evl1rhm.t s
evl1rhm.b
Assertion
Ref Expression
evl1rhm RingHom

Proof of Theorem evl1rhm
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evl1rhm.q . . 3 eval1
2 eqid 2443 . . 3 eval eval
3 evl1rhm.b . . 3
41, 2, 3evl1fval 18238 . 2 eval
5 evl1rhm.t . . . 4 s
6 eqid 2443 . . . 4
73, 5, 6evls1rhmlem 18232 . . 3 s RingHom
8 1on 7139 . . . . 5
9 eqid 2443 . . . . . 6 mPoly mPoly
10 eqid 2443 . . . . . 6 s s
112, 3, 9, 10evlrhm 18068 . . . . 5 eval mPoly RingHom s
128, 11mpan 670 . . . 4 eval mPoly RingHom s
13 eqidd 2444 . . . . 5
14 eqidd 2444 . . . . 5 s s
15 evl1rhm.w . . . . . . 7 Poly1
16 eqid 2443 . . . . . . 7 PwSer1 PwSer1
17 eqid 2443 . . . . . . 7
1815, 16, 17ply1bas 18108 . . . . . 6 mPoly
1918a1i 11 . . . . 5 mPoly
20 eqid 2443 . . . . . . . 8
2115, 9, 20ply1plusg 18140 . . . . . . 7 mPoly
2221a1i 11 . . . . . 6 mPoly
2322oveqdr 6305 . . . . 5 mPoly
24 eqidd 2444 . . . . 5 s s s s
25 eqid 2443 . . . . . . . 8
2615, 9, 25ply1mulr 18142 . . . . . . 7 mPoly
2726a1i 11 . . . . . 6 mPoly
2827oveqdr 6305 . . . . 5 mPoly
29 eqidd 2444 . . . . 5 s s s s
3013, 14, 19, 14, 23, 24, 28, 29rhmpropd 17338 . . . 4 RingHom s mPoly RingHom s
3112, 30eleqtrrd 2534 . . 3 eval RingHom s
32 rhmco 17260 . . 3 s RingHom eval RingHom s eval RingHom
337, 31, 32syl2anc 661 . 2 eval RingHom
344, 33syl5eqel 2535 1 RingHom
 Colors of variables: wff setvar class Syntax hints:   wi 4   wa 369   wceq 1383   wcel 1804  csn 4014   cmpt 4495  con0 4868   cxp 4987   ccom 4993  cfv 5578  (class class class)co 6281  c1o 7125   cmap 7422  cbs 14509   cplusg 14574  cmulr 14575   s cpws 14721  ccrg 17073   RingHom crh 17235   mPoly cmpl 17876   eval cevl 18044  PwSer1cps1 18088  Poly1cpl1 18090  eval1ce1 18225 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-inf2 8061  ax-cnex 9551  ax-resscn 9552  ax-1cn 9553  ax-icn 9554  ax-addcl 9555  ax-addrcl 9556  ax-mulcl 9557  ax-mulrcl 9558  ax-mulcom 9559  ax-addass 9560  ax-mulass 9561  ax-distr 9562  ax-i2m1 9563  ax-1ne0 9564  ax-1rid 9565  ax-rnegex 9566  ax-rrecex 9567  ax-cnre 9568  ax-pre-lttri 9569  ax-pre-lttrn 9570  ax-pre-ltadd 9571  ax-pre-mulgt0 9572 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-int 4272  df-iun 4317  df-iin 4318  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-se 4829  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-isom 5587  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-of 6525  df-ofr 6526  df-om 6686  df-1st 6785  df-2nd 6786  df-supp 6904  df-recs 7044  df-rdg 7078  df-1o 7132  df-2o 7133  df-oadd 7136  df-er 7313  df-map 7424  df-pm 7425  df-ixp 7472  df-en 7519  df-dom 7520  df-sdom 7521  df-fin 7522  df-fsupp 7832  df-sup 7903  df-oi 7938  df-card 8323  df-pnf 9633  df-mnf 9634  df-xr 9635  df-ltxr 9636  df-le 9637  df-sub 9812  df-neg 9813  df-nn 10543  df-2 10600  df-3 10601  df-4 10602  df-5 10603  df-6 10604  df-7 10605  df-8 10606  df-9 10607  df-10 10608  df-n0 10802  df-z 10871  df-dec 10985  df-uz 11091  df-fz 11682  df-fzo 11804  df-seq 12087  df-hash 12385  df-struct 14511  df-ndx 14512  df-slot 14513  df-base 14514  df-sets 14515  df-ress 14516  df-plusg 14587  df-mulr 14588  df-sca 14590  df-vsca 14591  df-ip 14592  df-tset 14593  df-ple 14594  df-ds 14596  df-hom 14598  df-cco 14599  df-0g 14716  df-gsum 14717  df-prds 14722  df-pws 14724  df-mre 14860  df-mrc 14861  df-acs 14863  df-mgm 15746  df-sgrp 15785  df-mnd 15795  df-mhm 15840  df-submnd 15841  df-grp 15931  df-minusg 15932  df-sbg 15933  df-mulg 15934  df-subg 16072  df-ghm 16139  df-cntz 16229  df-cmn 16674  df-abl 16675  df-mgp 17016  df-ur 17028  df-srg 17032  df-ring 17074  df-cring 17075  df-rnghom 17238  df-subrg 17301  df-lmod 17388  df-lss 17453  df-lsp 17492  df-assa 17835  df-asp 17836  df-ascl 17837  df-psr 17879  df-mvr 17880  df-mpl 17881  df-opsr 17883  df-evls 18045  df-evl 18046  df-psr1 18093  df-ply1 18095  df-evl1 18227 This theorem is referenced by:  fveval1fvcl  18243  evl1addd  18251  evl1subd  18252  evl1muld  18253  evl1expd  18255  pf1const  18256  pf1id  18257  pf1subrg  18258  mpfpf1  18261  pf1mpf  18262  evl1gsummul  18270  evl1scvarpw  18273  ply1remlem  22436  ply1rem  22437  fta1glem1  22439  fta1glem2  22440  fta1g  22441  fta1blem  22442  plypf1  22482  lgsqrlem2  23489  lgsqrlem3  23490  pl1cn  27810  idomrootle  31128
 Copyright terms: Public domain W3C validator