MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evl1rhm Structured version   Unicode version

Theorem evl1rhm 17875
Description: Polynomial evaluation is a homomorphism (into the product ring). (Contributed by Mario Carneiro, 12-Jun-2015.) (Proof shortened by AV, 13-Sep-2019.)
Hypotheses
Ref Expression
evl1rhm.q  |-  O  =  (eval1 `  R )
evl1rhm.w  |-  P  =  (Poly1 `  R )
evl1rhm.t  |-  T  =  ( R  ^s  B )
evl1rhm.b  |-  B  =  ( Base `  R
)
Assertion
Ref Expression
evl1rhm  |-  ( R  e.  CRing  ->  O  e.  ( P RingHom  T ) )

Proof of Theorem evl1rhm
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evl1rhm.q . . 3  |-  O  =  (eval1 `  R )
2 eqid 2451 . . 3  |-  ( 1o eval  R )  =  ( 1o eval  R )
3 evl1rhm.b . . 3  |-  B  =  ( Base `  R
)
41, 2, 3evl1fval 17871 . 2  |-  O  =  ( ( x  e.  ( B  ^m  ( B  ^m  1o ) ) 
|->  ( x  o.  (
y  e.  B  |->  ( 1o  X.  { y } ) ) ) )  o.  ( 1o eval  R ) )
5 evl1rhm.t . . . 4  |-  T  =  ( R  ^s  B )
6 eqid 2451 . . . 4  |-  ( x  e.  ( B  ^m  ( B  ^m  1o ) )  |->  ( x  o.  ( y  e.  B  |->  ( 1o  X.  {
y } ) ) ) )  =  ( x  e.  ( B  ^m  ( B  ^m  1o ) )  |->  ( x  o.  ( y  e.  B  |->  ( 1o  X.  { y } ) ) ) )
73, 5, 6evls1rhmlem 17865 . . 3  |-  ( R  e.  CRing  ->  ( x  e.  ( B  ^m  ( B  ^m  1o ) ) 
|->  ( x  o.  (
y  e.  B  |->  ( 1o  X.  { y } ) ) ) )  e.  ( ( R  ^s  ( B  ^m  1o ) ) RingHom  T ) )
8 1on 7027 . . . . 5  |-  1o  e.  On
9 eqid 2451 . . . . . 6  |-  ( 1o mPoly  R )  =  ( 1o mPoly  R )
10 eqid 2451 . . . . . 6  |-  ( R  ^s  ( B  ^m  1o ) )  =  ( R  ^s  ( B  ^m  1o ) )
112, 3, 9, 10evlrhm 17718 . . . . 5  |-  ( ( 1o  e.  On  /\  R  e.  CRing )  -> 
( 1o eval  R )  e.  ( ( 1o mPoly  R
) RingHom  ( R  ^s  ( B  ^m  1o ) ) ) )
128, 11mpan 670 . . . 4  |-  ( R  e.  CRing  ->  ( 1o eval  R )  e.  ( ( 1o mPoly  R ) RingHom  ( R  ^s  ( B  ^m  1o ) ) ) )
13 eqidd 2452 . . . . 5  |-  ( R  e.  CRing  ->  ( Base `  P )  =  (
Base `  P )
)
14 eqidd 2452 . . . . 5  |-  ( R  e.  CRing  ->  ( Base `  ( R  ^s  ( B  ^m  1o ) ) )  =  ( Base `  ( R  ^s  ( B  ^m  1o ) ) ) )
15 evl1rhm.w . . . . . . 7  |-  P  =  (Poly1 `  R )
16 eqid 2451 . . . . . . 7  |-  (PwSer1 `  R
)  =  (PwSer1 `  R
)
17 eqid 2451 . . . . . . 7  |-  ( Base `  P )  =  (
Base `  P )
1815, 16, 17ply1bas 17758 . . . . . 6  |-  ( Base `  P )  =  (
Base `  ( 1o mPoly  R ) )
1918a1i 11 . . . . 5  |-  ( R  e.  CRing  ->  ( Base `  P )  =  (
Base `  ( 1o mPoly  R ) ) )
20 eqid 2451 . . . . . . . 8  |-  ( +g  `  P )  =  ( +g  `  P )
2115, 9, 20ply1plusg 17786 . . . . . . 7  |-  ( +g  `  P )  =  ( +g  `  ( 1o mPoly  R ) )
2221a1i 11 . . . . . 6  |-  ( R  e.  CRing  ->  ( +g  `  P )  =  ( +g  `  ( 1o mPoly  R ) ) )
2322proplem3 14731 . . . . 5  |-  ( ( R  e.  CRing  /\  (
x  e.  ( Base `  P )  /\  y  e.  ( Base `  P
) ) )  -> 
( x ( +g  `  P ) y )  =  ( x ( +g  `  ( 1o mPoly  R ) ) y ) )
24 eqidd 2452 . . . . 5  |-  ( ( R  e.  CRing  /\  (
x  e.  ( Base `  ( R  ^s  ( B  ^m  1o ) ) )  /\  y  e.  ( Base `  ( R  ^s  ( B  ^m  1o ) ) ) ) )  ->  ( x
( +g  `  ( R  ^s  ( B  ^m  1o ) ) ) y )  =  ( x ( +g  `  ( R  ^s  ( B  ^m  1o ) ) ) y ) )
25 eqid 2451 . . . . . . . 8  |-  ( .r
`  P )  =  ( .r `  P
)
2615, 9, 25ply1mulr 17788 . . . . . . 7  |-  ( .r
`  P )  =  ( .r `  ( 1o mPoly  R ) )
2726a1i 11 . . . . . 6  |-  ( R  e.  CRing  ->  ( .r `  P )  =  ( .r `  ( 1o mPoly  R ) ) )
2827proplem3 14731 . . . . 5  |-  ( ( R  e.  CRing  /\  (
x  e.  ( Base `  P )  /\  y  e.  ( Base `  P
) ) )  -> 
( x ( .r
`  P ) y )  =  ( x ( .r `  ( 1o mPoly  R ) ) y ) )
29 eqidd 2452 . . . . 5  |-  ( ( R  e.  CRing  /\  (
x  e.  ( Base `  ( R  ^s  ( B  ^m  1o ) ) )  /\  y  e.  ( Base `  ( R  ^s  ( B  ^m  1o ) ) ) ) )  ->  ( x
( .r `  ( R  ^s  ( B  ^m  1o ) ) ) y )  =  ( x ( .r `  ( R  ^s  ( B  ^m  1o ) ) ) y ) )
3013, 14, 19, 14, 23, 24, 28, 29rhmpropd 17006 . . . 4  |-  ( R  e.  CRing  ->  ( P RingHom  ( R  ^s  ( B  ^m  1o ) ) )  =  ( ( 1o mPoly  R
) RingHom  ( R  ^s  ( B  ^m  1o ) ) ) )
3112, 30eleqtrrd 2542 . . 3  |-  ( R  e.  CRing  ->  ( 1o eval  R )  e.  ( P RingHom 
( R  ^s  ( B  ^m  1o ) ) ) )
32 rhmco 16931 . . 3  |-  ( ( ( x  e.  ( B  ^m  ( B  ^m  1o ) ) 
|->  ( x  o.  (
y  e.  B  |->  ( 1o  X.  { y } ) ) ) )  e.  ( ( R  ^s  ( B  ^m  1o ) ) RingHom  T )  /\  ( 1o eval  R )  e.  ( P RingHom  ( R  ^s  ( B  ^m  1o ) ) ) )  -> 
( ( x  e.  ( B  ^m  ( B  ^m  1o ) ) 
|->  ( x  o.  (
y  e.  B  |->  ( 1o  X.  { y } ) ) ) )  o.  ( 1o eval  R ) )  e.  ( P RingHom  T )
)
337, 31, 32syl2anc 661 . 2  |-  ( R  e.  CRing  ->  ( (
x  e.  ( B  ^m  ( B  ^m  1o ) )  |->  ( x  o.  ( y  e.  B  |->  ( 1o  X.  { y } ) ) ) )  o.  ( 1o eval  R ) )  e.  ( P RingHom  T ) )
344, 33syl5eqel 2543 1  |-  ( R  e.  CRing  ->  O  e.  ( P RingHom  T ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1758   {csn 3975    |-> cmpt 4448   Oncon0 4817    X. cxp 4936    o. ccom 4942   ` cfv 5516  (class class class)co 6190   1oc1o 7013    ^m cmap 7314   Basecbs 14276   +g cplusg 14340   .rcmulr 14341    ^s cpws 14487   CRingccrg 16752   RingHom crh 16910   mPoly cmpl 17526   eval cevl 17694  PwSer1cps1 17738  Poly1cpl1 17740  eval1ce1 17858
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4501  ax-sep 4511  ax-nul 4519  ax-pow 4568  ax-pr 4629  ax-un 6472  ax-inf2 7948  ax-cnex 9439  ax-resscn 9440  ax-1cn 9441  ax-icn 9442  ax-addcl 9443  ax-addrcl 9444  ax-mulcl 9445  ax-mulrcl 9446  ax-mulcom 9447  ax-addass 9448  ax-mulass 9449  ax-distr 9450  ax-i2m1 9451  ax-1ne0 9452  ax-1rid 9453  ax-rnegex 9454  ax-rrecex 9455  ax-cnre 9456  ax-pre-lttri 9457  ax-pre-lttrn 9458  ax-pre-ltadd 9459  ax-pre-mulgt0 9460
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rmo 2803  df-rab 2804  df-v 3070  df-sbc 3285  df-csb 3387  df-dif 3429  df-un 3431  df-in 3433  df-ss 3440  df-pss 3442  df-nul 3736  df-if 3890  df-pw 3960  df-sn 3976  df-pr 3978  df-tp 3980  df-op 3982  df-uni 4190  df-int 4227  df-iun 4271  df-iin 4272  df-br 4391  df-opab 4449  df-mpt 4450  df-tr 4484  df-eprel 4730  df-id 4734  df-po 4739  df-so 4740  df-fr 4777  df-se 4778  df-we 4779  df-ord 4820  df-on 4821  df-lim 4822  df-suc 4823  df-xp 4944  df-rel 4945  df-cnv 4946  df-co 4947  df-dm 4948  df-rn 4949  df-res 4950  df-ima 4951  df-iota 5479  df-fun 5518  df-fn 5519  df-f 5520  df-f1 5521  df-fo 5522  df-f1o 5523  df-fv 5524  df-isom 5525  df-riota 6151  df-ov 6193  df-oprab 6194  df-mpt2 6195  df-of 6420  df-ofr 6421  df-om 6577  df-1st 6677  df-2nd 6678  df-supp 6791  df-recs 6932  df-rdg 6966  df-1o 7020  df-2o 7021  df-oadd 7024  df-er 7201  df-map 7316  df-pm 7317  df-ixp 7364  df-en 7411  df-dom 7412  df-sdom 7413  df-fin 7414  df-fsupp 7722  df-sup 7792  df-oi 7825  df-card 8210  df-pnf 9521  df-mnf 9522  df-xr 9523  df-ltxr 9524  df-le 9525  df-sub 9698  df-neg 9699  df-nn 10424  df-2 10481  df-3 10482  df-4 10483  df-5 10484  df-6 10485  df-7 10486  df-8 10487  df-9 10488  df-10 10489  df-n0 10681  df-z 10748  df-dec 10857  df-uz 10963  df-fz 11539  df-fzo 11650  df-seq 11908  df-hash 12205  df-struct 14278  df-ndx 14279  df-slot 14280  df-base 14281  df-sets 14282  df-ress 14283  df-plusg 14353  df-mulr 14354  df-sca 14356  df-vsca 14357  df-ip 14358  df-tset 14359  df-ple 14360  df-ds 14362  df-hom 14364  df-cco 14365  df-0g 14482  df-gsum 14483  df-prds 14488  df-pws 14490  df-mre 14626  df-mrc 14627  df-acs 14629  df-mnd 15517  df-mhm 15566  df-submnd 15567  df-grp 15647  df-minusg 15648  df-sbg 15649  df-mulg 15650  df-subg 15780  df-ghm 15847  df-cntz 15937  df-cmn 16383  df-abl 16384  df-mgp 16697  df-ur 16709  df-srg 16713  df-rng 16753  df-cring 16754  df-rnghom 16912  df-subrg 16969  df-lmod 17056  df-lss 17120  df-lsp 17159  df-assa 17490  df-asp 17491  df-ascl 17492  df-psr 17529  df-mvr 17530  df-mpl 17531  df-opsr 17533  df-evls 17695  df-evl 17696  df-psr1 17743  df-ply1 17745  df-evl1 17860
This theorem is referenced by:  fveval1fvcl  17876  evl1addd  17884  evl1subd  17885  evl1muld  17886  evl1expd  17888  pf1const  17889  pf1id  17890  pf1subrg  17891  mpfpf1  17894  pf1mpf  17895  evl1gsummul  17903  evl1scvarpw  17906  ply1remlem  21750  ply1rem  21751  facth1  21752  fta1glem1  21753  fta1glem2  21754  fta1g  21755  fta1blem  21756  plypf1  21796  lgsqrlem2  22797  lgsqrlem3  22798  pl1cn  26519  idomrootle  29698
  Copyright terms: Public domain W3C validator