MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eusvnf Structured version   Visualization version   Unicode version

Theorem eusvnf 4615
Description: Even if  x is free in  A, it is effectively bound when  A ( x ) is single-valued. (Contributed by NM, 14-Oct-2010.) (Revised by Mario Carneiro, 14-Oct-2016.)
Assertion
Ref Expression
eusvnf  |-  ( E! y A. x  y  =  A  ->  F/_ x A )
Distinct variable groups:    x, y    y, A
Allowed substitution hint:    A( x)

Proof of Theorem eusvnf
Dummy variables  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 euex 2334 . 2  |-  ( E! y A. x  y  =  A  ->  E. y A. x  y  =  A )
2 vex 3060 . . . . . . 7  |-  z  e. 
_V
3 nfcv 2603 . . . . . . . 8  |-  F/_ x
z
4 nfcsb1v 3391 . . . . . . . . 9  |-  F/_ x [_ z  /  x ]_ A
54nfeq2 2618 . . . . . . . 8  |-  F/ x  y  =  [_ z  /  x ]_ A
6 csbeq1a 3384 . . . . . . . . 9  |-  ( x  =  z  ->  A  =  [_ z  /  x ]_ A )
76eqeq2d 2472 . . . . . . . 8  |-  ( x  =  z  ->  (
y  =  A  <->  y  =  [_ z  /  x ]_ A ) )
83, 5, 7spcgf 3141 . . . . . . 7  |-  ( z  e.  _V  ->  ( A. x  y  =  A  ->  y  =  [_ z  /  x ]_ A
) )
92, 8ax-mp 5 . . . . . 6  |-  ( A. x  y  =  A  ->  y  =  [_ z  /  x ]_ A )
10 vex 3060 . . . . . . 7  |-  w  e. 
_V
11 nfcv 2603 . . . . . . . 8  |-  F/_ x w
12 nfcsb1v 3391 . . . . . . . . 9  |-  F/_ x [_ w  /  x ]_ A
1312nfeq2 2618 . . . . . . . 8  |-  F/ x  y  =  [_ w  /  x ]_ A
14 csbeq1a 3384 . . . . . . . . 9  |-  ( x  =  w  ->  A  =  [_ w  /  x ]_ A )
1514eqeq2d 2472 . . . . . . . 8  |-  ( x  =  w  ->  (
y  =  A  <->  y  =  [_ w  /  x ]_ A ) )
1611, 13, 15spcgf 3141 . . . . . . 7  |-  ( w  e.  _V  ->  ( A. x  y  =  A  ->  y  =  [_ w  /  x ]_ A
) )
1710, 16ax-mp 5 . . . . . 6  |-  ( A. x  y  =  A  ->  y  =  [_ w  /  x ]_ A )
189, 17eqtr3d 2498 . . . . 5  |-  ( A. x  y  =  A  ->  [_ z  /  x ]_ A  =  [_ w  /  x ]_ A )
1918alrimivv 1785 . . . 4  |-  ( A. x  y  =  A  ->  A. z A. w [_ z  /  x ]_ A  =  [_ w  /  x ]_ A )
20 sbnfc2 3808 . . . 4  |-  ( F/_ x A  <->  A. z A. w [_ z  /  x ]_ A  =  [_ w  /  x ]_ A )
2119, 20sylibr 217 . . 3  |-  ( A. x  y  =  A  -> 
F/_ x A )
2221exlimiv 1787 . 2  |-  ( E. y A. x  y  =  A  ->  F/_ x A )
231, 22syl 17 1  |-  ( E! y A. x  y  =  A  ->  F/_ x A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   A.wal 1453    = wceq 1455   E.wex 1674    e. wcel 1898   E!weu 2310   F/_wnfc 2590   _Vcvv 3057   [_csb 3375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1680  ax-4 1693  ax-5 1769  ax-6 1816  ax-7 1862  ax-10 1926  ax-11 1931  ax-12 1944  ax-13 2102  ax-ext 2442
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-tru 1458  df-fal 1461  df-ex 1675  df-nf 1679  df-sb 1809  df-eu 2314  df-clab 2449  df-cleq 2455  df-clel 2458  df-nfc 2592  df-v 3059  df-sbc 3280  df-csb 3376  df-dif 3419  df-in 3423  df-ss 3430  df-nul 3744
This theorem is referenced by:  eusvnfb  4616  eusv2i  4617
  Copyright terms: Public domain W3C validator