Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  eusv2i Structured version   Unicode version

Theorem eusv2i 4617
 Description: Two ways to express single-valuedness of a class expression . (Contributed by NM, 14-Oct-2010.) (Revised by Mario Carneiro, 18-Nov-2016.)
Assertion
Ref Expression
eusv2i
Distinct variable groups:   ,   ,
Allowed substitution hint:   ()

Proof of Theorem eusv2i
StepHypRef Expression
1 nfeu1 2276 . . 3
2 nfcvd 2585 . . . . . 6
3 eusvnf 4615 . . . . . 6
42, 3nfeqd 2591 . . . . 5
5 nf2 2016 . . . . 5
64, 5sylib 199 . . . 4
7 19.2 1798 . . . 4
86, 7impbid1 206 . . 3
91, 8eubid 2284 . 2
109ibir 245 1
 Colors of variables: wff setvar class Syntax hints:   wi 4  wal 1435   wceq 1437  wex 1659  wnf 1663  weu 2265 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400 This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-tru 1440  df-fal 1443  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2269  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-v 3083  df-sbc 3300  df-csb 3396  df-dif 3439  df-in 3443  df-ss 3450  df-nul 3762 This theorem is referenced by:  eusv2nf  4618
 Copyright terms: Public domain W3C validator