MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eusv1 Structured version   Unicode version

Theorem eusv1 4576
Description: Two ways to express single-valuedness of a class expression  A ( x ). (Contributed by NM, 14-Oct-2010.)
Assertion
Ref Expression
eusv1  |-  ( E! y A. x  y  =  A  <->  E. y A. x  y  =  A )
Distinct variable groups:    x, y    y, A
Allowed substitution hint:    A( x)

Proof of Theorem eusv1
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 sp 1877 . . . 4  |-  ( A. x  y  =  A  ->  y  =  A )
2 sp 1877 . . . 4  |-  ( A. x  z  =  A  ->  z  =  A )
3 eqtr3 2424 . . . 4  |-  ( ( y  =  A  /\  z  =  A )  ->  y  =  z )
41, 2, 3syl2an 475 . . 3  |-  ( ( A. x  y  =  A  /\  A. x  z  =  A )  ->  y  =  z )
54gen2 1634 . 2  |-  A. y A. z ( ( A. x  y  =  A  /\  A. x  z  =  A )  ->  y  =  z )
6 eqeq1 2400 . . . 4  |-  ( y  =  z  ->  (
y  =  A  <->  z  =  A ) )
76albidv 1728 . . 3  |-  ( y  =  z  ->  ( A. x  y  =  A 
<-> 
A. x  z  =  A ) )
87eu4 2284 . 2  |-  ( E! y A. x  y  =  A  <->  ( E. y A. x  y  =  A  /\  A. y A. z ( ( A. x  y  =  A  /\  A. x  z  =  A )  ->  y  =  z ) ) )
95, 8mpbiran2 917 1  |-  ( E! y A. x  y  =  A  <->  E. y A. x  y  =  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367   A.wal 1397    = wceq 1399   E.wex 1627   E!weu 2232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1633  ax-4 1646  ax-5 1719  ax-6 1765  ax-7 1808  ax-10 1855  ax-11 1860  ax-12 1872  ax-13 2020  ax-ext 2374
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-tru 1402  df-ex 1628  df-nf 1632  df-sb 1758  df-eu 2236  df-mo 2237  df-cleq 2388
This theorem is referenced by:  eusvnfb  4578
  Copyright terms: Public domain W3C validator