MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eusv1 Structured version   Visualization version   Unicode version

Theorem eusv1 4610
Description: Two ways to express single-valuedness of a class expression  A ( x ). (Contributed by NM, 14-Oct-2010.)
Assertion
Ref Expression
eusv1  |-  ( E! y A. x  y  =  A  <->  E. y A. x  y  =  A )
Distinct variable groups:    x, y    y, A
Allowed substitution hint:    A( x)

Proof of Theorem eusv1
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 sp 1947 . . . 4  |-  ( A. x  y  =  A  ->  y  =  A )
2 sp 1947 . . . 4  |-  ( A. x  z  =  A  ->  z  =  A )
3 eqtr3 2482 . . . 4  |-  ( ( y  =  A  /\  z  =  A )  ->  y  =  z )
41, 2, 3syl2an 484 . . 3  |-  ( ( A. x  y  =  A  /\  A. x  z  =  A )  ->  y  =  z )
54gen2 1680 . 2  |-  A. y A. z ( ( A. x  y  =  A  /\  A. x  z  =  A )  ->  y  =  z )
6 eqeq1 2465 . . . 4  |-  ( y  =  z  ->  (
y  =  A  <->  z  =  A ) )
76albidv 1777 . . 3  |-  ( y  =  z  ->  ( A. x  y  =  A 
<-> 
A. x  z  =  A ) )
87eu4 2357 . 2  |-  ( E! y A. x  y  =  A  <->  ( E. y A. x  y  =  A  /\  A. y A. z ( ( A. x  y  =  A  /\  A. x  z  =  A )  ->  y  =  z ) ) )
95, 8mpbiran2 935 1  |-  ( E! y A. x  y  =  A  <->  E. y A. x  y  =  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 375   A.wal 1452    = wceq 1454   E.wex 1673   E!weu 2309
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1679  ax-4 1692  ax-5 1768  ax-6 1815  ax-7 1861  ax-10 1925  ax-11 1930  ax-12 1943  ax-13 2101  ax-ext 2441
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-tru 1457  df-ex 1674  df-nf 1678  df-sb 1808  df-eu 2313  df-mo 2314  df-cleq 2454
This theorem is referenced by:  eusvnfb  4612
  Copyright terms: Public domain W3C validator