Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  eupickbiOLD Structured version   Unicode version

Theorem eupickbiOLD 2369
 Description: Theorem *14.26 in [WhiteheadRussell] p. 192. (Contributed by Andrew Salmon, 11-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
eupickbiOLD

Proof of Theorem eupickbiOLD
StepHypRef Expression
1 eupicka 2365 . . 3
21ex 434 . 2
3 nfa1 1845 . . . . 5
4 ancl 546 . . . . . . 7
5 simpl 457 . . . . . . 7
64, 5impbid1 203 . . . . . 6
76sps 1814 . . . . 5
83, 7eubid 2296 . . . 4
9 euex 2303 . . . 4
108, 9syl6bi 228 . . 3
1110com12 31 . 2
122, 11impbid 191 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 184   wa 369  wal 1377  wex 1596  weu 2275 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968 This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1597  df-nf 1600  df-eu 2279  df-mo 2280 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator