Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  eupickbi Unicode version

Theorem eupickbi 2179
 Description: Theorem *14.26 in [WhiteheadRussell] p. 192. (Contributed by Andrew Salmon, 11-Jul-2011.)
Assertion
Ref Expression
eupickbi

Proof of Theorem eupickbi
StepHypRef Expression
1 eupicka 2177 . . 3
21ex 425 . 2
3 nfa1 1719 . . . . 5
4 ancl 531 . . . . . . 7
5 simpl 445 . . . . . . 7
64, 5impbid1 196 . . . . . 6
76a4s 1700 . . . . 5
83, 7eubid 2121 . . . 4
9 euex 2136 . . . 4
108, 9syl6bi 221 . . 3
1110com12 29 . 2
122, 11impbid 185 1
 Colors of variables: wff set class Syntax hints:   wi 6   wb 178   wa 360  wal 1532  wex 1537  weu 2114 This theorem is referenced by:  sbaniota  26802 This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119
 Copyright terms: Public domain W3C validator