MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eupath2lem2 Structured version   Unicode version

Theorem eupath2lem2 25277
Description: Lemma for eupath2 25279. (Contributed by Mario Carneiro, 8-Apr-2015.)
Hypothesis
Ref Expression
eupath2lem2.1  |-  B  e. 
_V
Assertion
Ref Expression
eupath2lem2  |-  ( ( B  =/=  C  /\  B  =  U )  ->  ( -.  U  e.  if ( A  =  B ,  (/) ,  { A ,  B }
)  <->  U  e.  if ( A  =  C ,  (/) ,  { A ,  C } ) ) )

Proof of Theorem eupath2lem2
StepHypRef Expression
1 eqidd 2401 . . . . . . 7  |-  ( ( B  =/=  C  /\  B  =  U )  ->  B  =  B )
21olcd 391 . . . . . 6  |-  ( ( B  =/=  C  /\  B  =  U )  ->  ( B  =  A  \/  B  =  B ) )
32biantrud 505 . . . . 5  |-  ( ( B  =/=  C  /\  B  =  U )  ->  ( A  =/=  B  <->  ( A  =/=  B  /\  ( B  =  A  \/  B  =  B
) ) ) )
4 eupath2lem2.1 . . . . . 6  |-  B  e. 
_V
5 eupath2lem1 25276 . . . . . 6  |-  ( B  e.  _V  ->  ( B  e.  if ( A  =  B ,  (/)
,  { A ,  B } )  <->  ( A  =/=  B  /\  ( B  =  A  \/  B  =  B ) ) ) )
64, 5ax-mp 5 . . . . 5  |-  ( B  e.  if ( A  =  B ,  (/) ,  { A ,  B } )  <->  ( A  =/=  B  /\  ( B  =  A  \/  B  =  B ) ) )
73, 6syl6bbr 263 . . . 4  |-  ( ( B  =/=  C  /\  B  =  U )  ->  ( A  =/=  B  <->  B  e.  if ( A  =  B ,  (/) ,  { A ,  B } ) ) )
8 simpr 459 . . . . 5  |-  ( ( B  =/=  C  /\  B  =  U )  ->  B  =  U )
98eleq1d 2469 . . . 4  |-  ( ( B  =/=  C  /\  B  =  U )  ->  ( B  e.  if ( A  =  B ,  (/) ,  { A ,  B } )  <->  U  e.  if ( A  =  B ,  (/) ,  { A ,  B } ) ) )
107, 9bitrd 253 . . 3  |-  ( ( B  =/=  C  /\  B  =  U )  ->  ( A  =/=  B  <->  U  e.  if ( A  =  B ,  (/) ,  { A ,  B } ) ) )
1110necon1bbid 2651 . 2  |-  ( ( B  =/=  C  /\  B  =  U )  ->  ( -.  U  e.  if ( A  =  B ,  (/) ,  { A ,  B }
)  <->  A  =  B
) )
12 simpl 455 . . . . . . 7  |-  ( ( B  =/=  C  /\  B  =  U )  ->  B  =/=  C )
13 neeq1 2682 . . . . . . 7  |-  ( B  =  A  ->  ( B  =/=  C  <->  A  =/=  C ) )
1412, 13syl5ibcom 220 . . . . . 6  |-  ( ( B  =/=  C  /\  B  =  U )  ->  ( B  =  A  ->  A  =/=  C
) )
1514pm4.71rd 633 . . . . 5  |-  ( ( B  =/=  C  /\  B  =  U )  ->  ( B  =  A  <-> 
( A  =/=  C  /\  B  =  A
) ) )
16 eqcom 2409 . . . . 5  |-  ( A  =  B  <->  B  =  A )
17 ancom 448 . . . . 5  |-  ( ( B  =  A  /\  A  =/=  C )  <->  ( A  =/=  C  /\  B  =  A ) )
1815, 16, 173bitr4g 288 . . . 4  |-  ( ( B  =/=  C  /\  B  =  U )  ->  ( A  =  B  <-> 
( B  =  A  /\  A  =/=  C
) ) )
1912neneqd 2603 . . . . . . 7  |-  ( ( B  =/=  C  /\  B  =  U )  ->  -.  B  =  C )
20 biorf 403 . . . . . . 7  |-  ( -.  B  =  C  -> 
( B  =  A  <-> 
( B  =  C  \/  B  =  A ) ) )
2119, 20syl 17 . . . . . 6  |-  ( ( B  =/=  C  /\  B  =  U )  ->  ( B  =  A  <-> 
( B  =  C  \/  B  =  A ) ) )
22 orcom 385 . . . . . 6  |-  ( ( B  =  C  \/  B  =  A )  <->  ( B  =  A  \/  B  =  C )
)
2321, 22syl6bb 261 . . . . 5  |-  ( ( B  =/=  C  /\  B  =  U )  ->  ( B  =  A  <-> 
( B  =  A  \/  B  =  C ) ) )
2423anbi1d 703 . . . 4  |-  ( ( B  =/=  C  /\  B  =  U )  ->  ( ( B  =  A  /\  A  =/= 
C )  <->  ( ( B  =  A  \/  B  =  C )  /\  A  =/=  C
) ) )
2518, 24bitrd 253 . . 3  |-  ( ( B  =/=  C  /\  B  =  U )  ->  ( A  =  B  <-> 
( ( B  =  A  \/  B  =  C )  /\  A  =/=  C ) ) )
26 ancom 448 . . 3  |-  ( ( A  =/=  C  /\  ( B  =  A  \/  B  =  C
) )  <->  ( ( B  =  A  \/  B  =  C )  /\  A  =/=  C
) )
2725, 26syl6bbr 263 . 2  |-  ( ( B  =/=  C  /\  B  =  U )  ->  ( A  =  B  <-> 
( A  =/=  C  /\  ( B  =  A  \/  B  =  C ) ) ) )
28 eupath2lem1 25276 . . . 4  |-  ( B  e.  _V  ->  ( B  e.  if ( A  =  C ,  (/)
,  { A ,  C } )  <->  ( A  =/=  C  /\  ( B  =  A  \/  B  =  C ) ) ) )
294, 28ax-mp 5 . . 3  |-  ( B  e.  if ( A  =  C ,  (/) ,  { A ,  C } )  <->  ( A  =/=  C  /\  ( B  =  A  \/  B  =  C ) ) )
308eleq1d 2469 . . 3  |-  ( ( B  =/=  C  /\  B  =  U )  ->  ( B  e.  if ( A  =  C ,  (/) ,  { A ,  C } )  <->  U  e.  if ( A  =  C ,  (/) ,  { A ,  C } ) ) )
3129, 30syl5bbr 259 . 2  |-  ( ( B  =/=  C  /\  B  =  U )  ->  ( ( A  =/= 
C  /\  ( B  =  A  \/  B  =  C ) )  <->  U  e.  if ( A  =  C ,  (/) ,  { A ,  C } ) ) )
3211, 27, 313bitrd 279 1  |-  ( ( B  =/=  C  /\  B  =  U )  ->  ( -.  U  e.  if ( A  =  B ,  (/) ,  { A ,  B }
)  <->  U  e.  if ( A  =  C ,  (/) ,  { A ,  C } ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 366    /\ wa 367    = wceq 1403    e. wcel 1840    =/= wne 2596   _Vcvv 3056   (/)c0 3735   ifcif 3882   {cpr 3971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1637  ax-4 1650  ax-5 1723  ax-6 1769  ax-7 1812  ax-10 1859  ax-11 1864  ax-12 1876  ax-13 2024  ax-ext 2378
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-tru 1406  df-ex 1632  df-nf 1636  df-sb 1762  df-clab 2386  df-cleq 2392  df-clel 2395  df-nfc 2550  df-ne 2598  df-v 3058  df-dif 3414  df-un 3416  df-nul 3736  df-if 3883  df-sn 3970  df-pr 3972
This theorem is referenced by:  eupath2lem3  25278
  Copyright terms: Public domain W3C validator