MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eupafi Structured version   Unicode version

Theorem eupafi 23611
Description: Any graph with an Eulerian path is finite. (Contributed by Mario Carneiro, 7-Apr-2015.)
Assertion
Ref Expression
eupafi  |-  ( ( F ( V EulPaths  E ) P  /\  E  Fn  A )  ->  A  e.  Fin )

Proof of Theorem eupafi
StepHypRef Expression
1 fzfid 11814 . 2  |-  ( ( F ( V EulPaths  E ) P  /\  E  Fn  A )  ->  (
1 ... ( # `  F
) )  e.  Fin )
2 eupaf1o 23610 . . 3  |-  ( ( F ( V EulPaths  E ) P  /\  E  Fn  A )  ->  F : ( 1 ... ( # `  F
) ) -1-1-onto-> A )
3 ovex 6135 . . . 4  |-  ( 1 ... ( # `  F
) )  e.  _V
43f1oen 7349 . . 3  |-  ( F : ( 1 ... ( # `  F
) ) -1-1-onto-> A  ->  ( 1 ... ( # `  F
) )  ~~  A
)
5 ensym 7377 . . 3  |-  ( ( 1 ... ( # `  F ) )  ~~  A  ->  A  ~~  (
1 ... ( # `  F
) ) )
62, 4, 53syl 20 . 2  |-  ( ( F ( V EulPaths  E ) P  /\  E  Fn  A )  ->  A  ~~  ( 1 ... ( # `
 F ) ) )
7 enfii 7549 . 2  |-  ( ( ( 1 ... ( # `
 F ) )  e.  Fin  /\  A  ~~  ( 1 ... ( # `
 F ) ) )  ->  A  e.  Fin )
81, 6, 7syl2anc 661 1  |-  ( ( F ( V EulPaths  E ) P  /\  E  Fn  A )  ->  A  e.  Fin )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    e. wcel 1756   class class class wbr 4311    Fn wfn 5432   -1-1-onto->wf1o 5436   ` cfv 5437  (class class class)co 6110    ~~ cen 7326   Fincfn 7329   1c1 9302   ...cfz 11456   #chash 12122   EulPaths ceup 23602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4422  ax-sep 4432  ax-nul 4440  ax-pow 4489  ax-pr 4550  ax-un 6391  ax-cnex 9357  ax-resscn 9358  ax-1cn 9359  ax-icn 9360  ax-addcl 9361  ax-addrcl 9362  ax-mulcl 9363  ax-mulrcl 9364  ax-mulcom 9365  ax-addass 9366  ax-mulass 9367  ax-distr 9368  ax-i2m1 9369  ax-1ne0 9370  ax-1rid 9371  ax-rnegex 9372  ax-rrecex 9373  ax-cnre 9374  ax-pre-lttri 9375  ax-pre-lttrn 9376  ax-pre-ltadd 9377  ax-pre-mulgt0 9378
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2739  df-rex 2740  df-reu 2741  df-rab 2743  df-v 2993  df-sbc 3206  df-csb 3308  df-dif 3350  df-un 3352  df-in 3354  df-ss 3361  df-pss 3363  df-nul 3657  df-if 3811  df-pw 3881  df-sn 3897  df-pr 3899  df-tp 3901  df-op 3903  df-uni 4111  df-int 4148  df-iun 4192  df-br 4312  df-opab 4370  df-mpt 4371  df-tr 4405  df-eprel 4651  df-id 4655  df-po 4660  df-so 4661  df-fr 4698  df-we 4700  df-ord 4741  df-on 4742  df-lim 4743  df-suc 4744  df-xp 4865  df-rel 4866  df-cnv 4867  df-co 4868  df-dm 4869  df-rn 4870  df-res 4871  df-ima 4872  df-iota 5400  df-fun 5439  df-fn 5440  df-f 5441  df-f1 5442  df-fo 5443  df-f1o 5444  df-fv 5445  df-riota 6071  df-ov 6113  df-oprab 6114  df-mpt2 6115  df-om 6496  df-1st 6596  df-2nd 6597  df-recs 6851  df-rdg 6885  df-1o 6939  df-er 7120  df-pm 7236  df-en 7330  df-dom 7331  df-sdom 7332  df-fin 7333  df-card 8128  df-pnf 9439  df-mnf 9440  df-xr 9441  df-ltxr 9442  df-le 9443  df-sub 9616  df-neg 9617  df-nn 10342  df-n0 10599  df-z 10666  df-uz 10881  df-fz 11457  df-hash 12123  df-umgra 23266  df-eupa 23603
This theorem is referenced by:  eupath2lem3  23619
  Copyright terms: Public domain W3C validator