MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  euor2OLD Structured version   Unicode version

Theorem euor2OLD 2328
Description: Obsolete proof of euor2 2327 as of 27-Dec-2018. (Contributed by NM, 21-Oct-2005.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
euor2OLD  |-  ( -. 
E. x ph  ->  ( E! x ( ph  \/  ps )  <->  E! x ps ) )

Proof of Theorem euor2OLD
StepHypRef Expression
1 nfe1 1784 . . 3  |-  F/ x E. x ph
21nfn 1844 . 2  |-  F/ x  -.  E. x ph
3 19.8a 1801 . . . 4  |-  ( ph  ->  E. x ph )
43con3i 135 . . 3  |-  ( -. 
E. x ph  ->  -. 
ph )
5 orel1 382 . . . 4  |-  ( -. 
ph  ->  ( ( ph  \/  ps )  ->  ps ) )
6 olc 384 . . . 4  |-  ( ps 
->  ( ph  \/  ps ) )
75, 6impbid1 203 . . 3  |-  ( -. 
ph  ->  ( ( ph  \/  ps )  <->  ps )
)
84, 7syl 16 . 2  |-  ( -. 
E. x ph  ->  ( ( ph  \/  ps ) 
<->  ps ) )
92, 8eubid 2289 1  |-  ( -. 
E. x ph  ->  ( E! x ( ph  \/  ps )  <->  E! x ps ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368   E.wex 1591   E!weu 2268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-10 1781  ax-12 1798
This theorem depends on definitions:  df-bi 185  df-or 370  df-ex 1592  df-nf 1595  df-eu 2272
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator