MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  euor2 Structured version   Unicode version

Theorem euor2 2320
Description: Introduce or eliminate a disjunct in a uniqueness quantifier. (Contributed by NM, 21-Oct-2005.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) (Proof shortened by Wolf Lammen, 27-Dec-2018.)
Assertion
Ref Expression
euor2  |-  ( -. 
E. x ph  ->  ( E! x ( ph  \/  ps )  <->  E! x ps ) )

Proof of Theorem euor2
StepHypRef Expression
1 nfe1 1780 . . 3  |-  F/ x E. x ph
21nfn 1839 . 2  |-  F/ x  -.  E. x ph
3 19.8a 1796 . . . 4  |-  ( ph  ->  E. x ph )
43con3i 135 . . 3  |-  ( -. 
E. x ph  ->  -. 
ph )
5 biorf 405 . . . 4  |-  ( -. 
ph  ->  ( ps  <->  ( ph  \/  ps ) ) )
65bicomd 201 . . 3  |-  ( -. 
ph  ->  ( ( ph  \/  ps )  <->  ps )
)
74, 6syl 16 . 2  |-  ( -. 
E. x ph  ->  ( ( ph  \/  ps ) 
<->  ps ) )
82, 7eubid 2282 1  |-  ( -. 
E. x ph  ->  ( E! x ( ph  \/  ps )  <->  E! x ps ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368   E.wex 1587   E!weu 2261
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-10 1777  ax-12 1794
This theorem depends on definitions:  df-bi 185  df-or 370  df-ex 1588  df-nf 1591  df-eu 2265
This theorem is referenced by:  reuun2  3736
  Copyright terms: Public domain W3C validator