Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartlemt Structured version   Unicode version

Theorem eulerpartlemt 27978
Description: Lemma for eulerpart 27989 (Contributed by Thierry Arnoux, 19-Sep-2017.)
Hypotheses
Ref Expression
eulerpart.p  |-  P  =  { f  e.  ( NN0  ^m  NN )  |  ( ( `' f " NN )  e.  Fin  /\  sum_ k  e.  NN  (
( f `  k
)  x.  k )  =  N ) }
eulerpart.o  |-  O  =  { g  e.  P  |  A. n  e.  ( `' g " NN )  -.  2  ||  n }
eulerpart.d  |-  D  =  { g  e.  P  |  A. n  e.  NN  ( g `  n
)  <_  1 }
eulerpart.j  |-  J  =  { z  e.  NN  |  -.  2  ||  z }
eulerpart.f  |-  F  =  ( x  e.  J ,  y  e.  NN0  |->  ( ( 2 ^ y )  x.  x
) )
eulerpart.h  |-  H  =  { r  e.  ( ( ~P NN0  i^i  Fin )  ^m  J )  |  ( r supp  (/) )  e. 
Fin }
eulerpart.m  |-  M  =  ( r  e.  H  |->  { <. x ,  y
>.  |  ( x  e.  J  /\  y  e.  ( r `  x
) ) } )
eulerpart.r  |-  R  =  { f  |  ( `' f " NN )  e.  Fin }
eulerpart.t  |-  T  =  { f  e.  ( NN0  ^m  NN )  |  ( `' f
" NN )  C_  J }
Assertion
Ref Expression
eulerpartlemt  |-  ( ( NN0  ^m  J )  i^i  R )  =  ran  ( m  e.  ( T  i^i  R
)  |->  ( m  |`  J ) )
Distinct variable groups:    f, m, J    R, m    T, m
Allowed substitution hints:    D( x, y, z, f, g, k, m, n, r)    P( x, y, z, f, g, k, m, n, r)    R( x, y, z, f, g, k, n, r)    T( x, y, z, f, g, k, n, r)    F( x, y, z, f, g, k, m, n, r)    H( x, y, z, f, g, k, m, n, r)    J( x, y, z, g, k, n, r)    M( x, y, z, f, g, k, m, n, r)    N( x, y, z, f, g, k, m, n, r)    O( x, y, z, f, g, k, m, n, r)

Proof of Theorem eulerpartlemt
Dummy variable  o is distinct from all other variables.
StepHypRef Expression
1 elmapi 7440 . . . . . . . . . 10  |-  ( o  e.  ( NN0  ^m  J )  ->  o : J --> NN0 )
21adantr 465 . . . . . . . . 9  |-  ( ( o  e.  ( NN0 
^m  J )  /\  o  e.  R )  ->  o : J --> NN0 )
3 c0ex 9590 . . . . . . . . . . 11  |-  0  e.  _V
43fconst 5771 . . . . . . . . . 10  |-  ( ( NN  \  J )  X.  { 0 } ) : ( NN 
\  J ) --> { 0 }
54a1i 11 . . . . . . . . 9  |-  ( ( o  e.  ( NN0 
^m  J )  /\  o  e.  R )  ->  ( ( NN  \  J )  X.  {
0 } ) : ( NN  \  J
) --> { 0 } )
6 disjdif 3899 . . . . . . . . . 10  |-  ( J  i^i  ( NN  \  J ) )  =  (/)
76a1i 11 . . . . . . . . 9  |-  ( ( o  e.  ( NN0 
^m  J )  /\  o  e.  R )  ->  ( J  i^i  ( NN  \  J ) )  =  (/) )
8 fun 5748 . . . . . . . . 9  |-  ( ( ( o : J --> NN0  /\  ( ( NN 
\  J )  X. 
{ 0 } ) : ( NN  \  J ) --> { 0 } )  /\  ( J  i^i  ( NN  \  J ) )  =  (/) )  ->  ( o  u.  ( ( NN 
\  J )  X. 
{ 0 } ) ) : ( J  u.  ( NN  \  J ) ) --> ( NN0  u.  { 0 } ) )
92, 5, 7, 8syl21anc 1227 . . . . . . . 8  |-  ( ( o  e.  ( NN0 
^m  J )  /\  o  e.  R )  ->  ( o  u.  (
( NN  \  J
)  X.  { 0 } ) ) : ( J  u.  ( NN  \  J ) ) --> ( NN0  u.  {
0 } ) )
10 eulerpart.j . . . . . . . . . . 11  |-  J  =  { z  e.  NN  |  -.  2  ||  z }
11 ssrab2 3585 . . . . . . . . . . 11  |-  { z  e.  NN  |  -.  2  ||  z }  C_  NN
1210, 11eqsstri 3534 . . . . . . . . . 10  |-  J  C_  NN
13 undif 3907 . . . . . . . . . 10  |-  ( J 
C_  NN  <->  ( J  u.  ( NN  \  J ) )  =  NN )
1412, 13mpbi 208 . . . . . . . . 9  |-  ( J  u.  ( NN  \  J ) )  =  NN
15 0nn0 10810 . . . . . . . . . . 11  |-  0  e.  NN0
16 snssi 4171 . . . . . . . . . . 11  |-  ( 0  e.  NN0  ->  { 0 }  C_  NN0 )
1715, 16ax-mp 5 . . . . . . . . . 10  |-  { 0 }  C_  NN0
18 ssequn2 3677 . . . . . . . . . 10  |-  ( { 0 }  C_  NN0  <->  ( NN0  u. 
{ 0 } )  =  NN0 )
1917, 18mpbi 208 . . . . . . . . 9  |-  ( NN0 
u.  { 0 } )  =  NN0
2014, 19feq23i 5725 . . . . . . . 8  |-  ( ( o  u.  ( ( NN  \  J )  X.  { 0 } ) ) : ( J  u.  ( NN 
\  J ) ) --> ( NN0  u.  {
0 } )  <->  ( o  u.  ( ( NN  \  J )  X.  {
0 } ) ) : NN --> NN0 )
219, 20sylib 196 . . . . . . 7  |-  ( ( o  e.  ( NN0 
^m  J )  /\  o  e.  R )  ->  ( o  u.  (
( NN  \  J
)  X.  { 0 } ) ) : NN --> NN0 )
22 nn0ex 10801 . . . . . . . 8  |-  NN0  e.  _V
23 nnex 10542 . . . . . . . 8  |-  NN  e.  _V
2422, 23elmap 7447 . . . . . . 7  |-  ( ( o  u.  ( ( NN  \  J )  X.  { 0 } ) )  e.  ( NN0  ^m  NN )  <-> 
( o  u.  (
( NN  \  J
)  X.  { 0 } ) ) : NN --> NN0 )
2521, 24sylibr 212 . . . . . 6  |-  ( ( o  e.  ( NN0 
^m  J )  /\  o  e.  R )  ->  ( o  u.  (
( NN  \  J
)  X.  { 0 } ) )  e.  ( NN0  ^m  NN ) )
26 cnvun 5411 . . . . . . . . 9  |-  `' ( o  u.  ( ( NN  \  J )  X.  { 0 } ) )  =  ( `' o  u.  `' ( ( NN  \  J )  X.  {
0 } ) )
2726imaeq1i 5334 . . . . . . . 8  |-  ( `' ( o  u.  (
( NN  \  J
)  X.  { 0 } ) ) " NN )  =  (
( `' o  u.  `' ( ( NN 
\  J )  X. 
{ 0 } ) ) " NN )
28 imaundir 5419 . . . . . . . 8  |-  ( ( `' o  u.  `' ( ( NN  \  J )  X.  {
0 } ) )
" NN )  =  ( ( `' o
" NN )  u.  ( `' ( ( NN  \  J )  X.  { 0 } ) " NN ) )
2927, 28eqtri 2496 . . . . . . 7  |-  ( `' ( o  u.  (
( NN  \  J
)  X.  { 0 } ) ) " NN )  =  (
( `' o " NN )  u.  ( `' ( ( NN 
\  J )  X. 
{ 0 } )
" NN ) )
30 vex 3116 . . . . . . . . . . 11  |-  o  e. 
_V
31 cnveq 5176 . . . . . . . . . . . . 13  |-  ( f  =  o  ->  `' f  =  `' o
)
3231imaeq1d 5336 . . . . . . . . . . . 12  |-  ( f  =  o  ->  ( `' f " NN )  =  ( `' o " NN ) )
3332eleq1d 2536 . . . . . . . . . . 11  |-  ( f  =  o  ->  (
( `' f " NN )  e.  Fin  <->  ( `' o " NN )  e.  Fin )
)
34 eulerpart.r . . . . . . . . . . 11  |-  R  =  { f  |  ( `' f " NN )  e.  Fin }
3530, 33, 34elab2 3253 . . . . . . . . . 10  |-  ( o  e.  R  <->  ( `' o " NN )  e. 
Fin )
3635biimpi 194 . . . . . . . . 9  |-  ( o  e.  R  ->  ( `' o " NN )  e.  Fin )
3736adantl 466 . . . . . . . 8  |-  ( ( o  e.  ( NN0 
^m  J )  /\  o  e.  R )  ->  ( `' o " NN )  e.  Fin )
38 cnvxp 5424 . . . . . . . . . . . . . 14  |-  `' ( ( NN  \  J
)  X.  { 0 } )  =  ( { 0 }  X.  ( NN  \  J ) )
3938dmeqi 5204 . . . . . . . . . . . . 13  |-  dom  `' ( ( NN  \  J )  X.  {
0 } )  =  dom  ( { 0 }  X.  ( NN 
\  J ) )
40 2nn 10693 . . . . . . . . . . . . . . 15  |-  2  e.  NN
41 2z 10896 . . . . . . . . . . . . . . . . 17  |-  2  e.  ZZ
42 iddvds 13858 . . . . . . . . . . . . . . . . 17  |-  ( 2  e.  ZZ  ->  2  ||  2 )
4341, 42ax-mp 5 . . . . . . . . . . . . . . . 16  |-  2  ||  2
44 breq2 4451 . . . . . . . . . . . . . . . . . . 19  |-  ( z  =  2  ->  (
2  ||  z  <->  2  ||  2 ) )
4544notbid 294 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  2  ->  ( -.  2  ||  z  <->  -.  2  ||  2 ) )
4645, 10elrab2 3263 . . . . . . . . . . . . . . . . 17  |-  ( 2  e.  J  <->  ( 2  e.  NN  /\  -.  2  ||  2 ) )
4746simprbi 464 . . . . . . . . . . . . . . . 16  |-  ( 2  e.  J  ->  -.  2  ||  2 )
4843, 47mt2 179 . . . . . . . . . . . . . . 15  |-  -.  2  e.  J
49 eldif 3486 . . . . . . . . . . . . . . 15  |-  ( 2  e.  ( NN  \  J )  <->  ( 2  e.  NN  /\  -.  2  e.  J )
)
5040, 48, 49mpbir2an 918 . . . . . . . . . . . . . 14  |-  2  e.  ( NN  \  J
)
51 ne0i 3791 . . . . . . . . . . . . . 14  |-  ( 2  e.  ( NN  \  J )  ->  ( NN  \  J )  =/=  (/) )
52 dmxp 5221 . . . . . . . . . . . . . 14  |-  ( ( NN  \  J )  =/=  (/)  ->  dom  ( { 0 }  X.  ( NN  \  J ) )  =  { 0 } )
5350, 51, 52mp2b 10 . . . . . . . . . . . . 13  |-  dom  ( { 0 }  X.  ( NN  \  J ) )  =  { 0 }
5439, 53eqtri 2496 . . . . . . . . . . . 12  |-  dom  `' ( ( NN  \  J )  X.  {
0 } )  =  { 0 }
5554ineq1i 3696 . . . . . . . . . . 11  |-  ( dom  `' ( ( NN 
\  J )  X. 
{ 0 } )  i^i  NN )  =  ( { 0 }  i^i  NN )
56 incom 3691 . . . . . . . . . . 11  |-  ( NN 
i^i  { 0 } )  =  ( { 0 }  i^i  NN )
57 0nnn 10567 . . . . . . . . . . . 12  |-  -.  0  e.  NN
58 disjsn 4088 . . . . . . . . . . . 12  |-  ( ( NN  i^i  { 0 } )  =  (/)  <->  -.  0  e.  NN )
5957, 58mpbir 209 . . . . . . . . . . 11  |-  ( NN 
i^i  { 0 } )  =  (/)
6055, 56, 593eqtr2i 2502 . . . . . . . . . 10  |-  ( dom  `' ( ( NN 
\  J )  X. 
{ 0 } )  i^i  NN )  =  (/)
61 imadisj 5356 . . . . . . . . . 10  |-  ( ( `' ( ( NN 
\  J )  X. 
{ 0 } )
" NN )  =  (/) 
<->  ( dom  `' ( ( NN  \  J
)  X.  { 0 } )  i^i  NN )  =  (/) )
6260, 61mpbir 209 . . . . . . . . 9  |-  ( `' ( ( NN  \  J )  X.  {
0 } ) " NN )  =  (/)
63 0fin 7747 . . . . . . . . 9  |-  (/)  e.  Fin
6462, 63eqeltri 2551 . . . . . . . 8  |-  ( `' ( ( NN  \  J )  X.  {
0 } ) " NN )  e.  Fin
65 unfi 7787 . . . . . . . 8  |-  ( ( ( `' o " NN )  e.  Fin  /\  ( `' ( ( NN  \  J )  X.  { 0 } ) " NN )  e.  Fin )  -> 
( ( `' o
" NN )  u.  ( `' ( ( NN  \  J )  X.  { 0 } ) " NN ) )  e.  Fin )
6637, 64, 65sylancl 662 . . . . . . 7  |-  ( ( o  e.  ( NN0 
^m  J )  /\  o  e.  R )  ->  ( ( `' o
" NN )  u.  ( `' ( ( NN  \  J )  X.  { 0 } ) " NN ) )  e.  Fin )
6729, 66syl5eqel 2559 . . . . . 6  |-  ( ( o  e.  ( NN0 
^m  J )  /\  o  e.  R )  ->  ( `' ( o  u.  ( ( NN 
\  J )  X. 
{ 0 } ) ) " NN )  e.  Fin )
68 cnvimass 5357 . . . . . . . . 9  |-  ( `' o " NN ) 
C_  dom  o
69 fdm 5735 . . . . . . . . . 10  |-  ( o : J --> NN0  ->  dom  o  =  J )
702, 69syl 16 . . . . . . . . 9  |-  ( ( o  e.  ( NN0 
^m  J )  /\  o  e.  R )  ->  dom  o  =  J )
7168, 70syl5sseq 3552 . . . . . . . 8  |-  ( ( o  e.  ( NN0 
^m  J )  /\  o  e.  R )  ->  ( `' o " NN )  C_  J )
72 0ss 3814 . . . . . . . . . 10  |-  (/)  C_  J
7362, 72eqsstri 3534 . . . . . . . . 9  |-  ( `' ( ( NN  \  J )  X.  {
0 } ) " NN )  C_  J
7473a1i 11 . . . . . . . 8  |-  ( ( o  e.  ( NN0 
^m  J )  /\  o  e.  R )  ->  ( `' ( ( NN  \  J )  X.  { 0 } ) " NN ) 
C_  J )
7571, 74unssd 3680 . . . . . . 7  |-  ( ( o  e.  ( NN0 
^m  J )  /\  o  e.  R )  ->  ( ( `' o
" NN )  u.  ( `' ( ( NN  \  J )  X.  { 0 } ) " NN ) )  C_  J )
7629, 75syl5eqss 3548 . . . . . 6  |-  ( ( o  e.  ( NN0 
^m  J )  /\  o  e.  R )  ->  ( `' ( o  u.  ( ( NN 
\  J )  X. 
{ 0 } ) ) " NN ) 
C_  J )
77 eulerpart.p . . . . . . 7  |-  P  =  { f  e.  ( NN0  ^m  NN )  |  ( ( `' f " NN )  e.  Fin  /\  sum_ k  e.  NN  (
( f `  k
)  x.  k )  =  N ) }
78 eulerpart.o . . . . . . 7  |-  O  =  { g  e.  P  |  A. n  e.  ( `' g " NN )  -.  2  ||  n }
79 eulerpart.d . . . . . . 7  |-  D  =  { g  e.  P  |  A. n  e.  NN  ( g `  n
)  <_  1 }
80 eulerpart.f . . . . . . 7  |-  F  =  ( x  e.  J ,  y  e.  NN0  |->  ( ( 2 ^ y )  x.  x
) )
81 eulerpart.h . . . . . . 7  |-  H  =  { r  e.  ( ( ~P NN0  i^i  Fin )  ^m  J )  |  ( r supp  (/) )  e. 
Fin }
82 eulerpart.m . . . . . . 7  |-  M  =  ( r  e.  H  |->  { <. x ,  y
>.  |  ( x  e.  J  /\  y  e.  ( r `  x
) ) } )
83 eulerpart.t . . . . . . 7  |-  T  =  { f  e.  ( NN0  ^m  NN )  |  ( `' f
" NN )  C_  J }
8477, 78, 79, 10, 80, 81, 82, 34, 83eulerpartlemt0 27976 . . . . . 6  |-  ( ( o  u.  ( ( NN  \  J )  X.  { 0 } ) )  e.  ( T  i^i  R )  <-> 
( ( o  u.  ( ( NN  \  J )  X.  {
0 } ) )  e.  ( NN0  ^m  NN )  /\  ( `' ( o  u.  ( ( NN  \  J )  X.  {
0 } ) )
" NN )  e. 
Fin  /\  ( `' ( o  u.  (
( NN  \  J
)  X.  { 0 } ) ) " NN )  C_  J ) )
8525, 67, 76, 84syl3anbrc 1180 . . . . 5  |-  ( ( o  e.  ( NN0 
^m  J )  /\  o  e.  R )  ->  ( o  u.  (
( NN  \  J
)  X.  { 0 } ) )  e.  ( T  i^i  R
) )
86 resundir 5288 . . . . . 6  |-  ( ( o  u.  ( ( NN  \  J )  X.  { 0 } ) )  |`  J )  =  ( ( o  |`  J )  u.  (
( ( NN  \  J )  X.  {
0 } )  |`  J ) )
87 ffn 5731 . . . . . . . 8  |-  ( o : J --> NN0  ->  o  Fn  J )
88 fnresdm 5690 . . . . . . . . 9  |-  ( o  Fn  J  ->  (
o  |`  J )  =  o )
89 incom 3691 . . . . . . . . . . . 12  |-  ( ( NN  \  J )  i^i  J )  =  ( J  i^i  ( NN  \  J ) )
9089, 6eqtri 2496 . . . . . . . . . . 11  |-  ( ( NN  \  J )  i^i  J )  =  (/)
91 fnconstg 5773 . . . . . . . . . . . 12  |-  ( 0  e.  NN0  ->  ( ( NN  \  J )  X.  { 0 } )  Fn  ( NN 
\  J ) )
92 fnresdisj 5691 . . . . . . . . . . . 12  |-  ( ( ( NN  \  J
)  X.  { 0 } )  Fn  ( NN  \  J )  -> 
( ( ( NN 
\  J )  i^i 
J )  =  (/)  <->  (
( ( NN  \  J )  X.  {
0 } )  |`  J )  =  (/) ) )
9315, 91, 92mp2b 10 . . . . . . . . . . 11  |-  ( ( ( NN  \  J
)  i^i  J )  =  (/)  <->  ( ( ( NN  \  J )  X.  { 0 } )  |`  J )  =  (/) )
9490, 93mpbi 208 . . . . . . . . . 10  |-  ( ( ( NN  \  J
)  X.  { 0 } )  |`  J )  =  (/)
9594a1i 11 . . . . . . . . 9  |-  ( o  Fn  J  ->  (
( ( NN  \  J )  X.  {
0 } )  |`  J )  =  (/) )
9688, 95uneq12d 3659 . . . . . . . 8  |-  ( o  Fn  J  ->  (
( o  |`  J )  u.  ( ( ( NN  \  J )  X.  { 0 } )  |`  J )
)  =  ( o  u.  (/) ) )
972, 87, 963syl 20 . . . . . . 7  |-  ( ( o  e.  ( NN0 
^m  J )  /\  o  e.  R )  ->  ( ( o  |`  J )  u.  (
( ( NN  \  J )  X.  {
0 } )  |`  J ) )  =  ( o  u.  (/) ) )
98 un0 3810 . . . . . . 7  |-  ( o  u.  (/) )  =  o
9997, 98syl6eq 2524 . . . . . 6  |-  ( ( o  e.  ( NN0 
^m  J )  /\  o  e.  R )  ->  ( ( o  |`  J )  u.  (
( ( NN  \  J )  X.  {
0 } )  |`  J ) )  =  o )
10086, 99syl5req 2521 . . . . 5  |-  ( ( o  e.  ( NN0 
^m  J )  /\  o  e.  R )  ->  o  =  ( ( o  u.  ( ( NN  \  J )  X.  { 0 } ) )  |`  J ) )
101 reseq1 5267 . . . . . . 7  |-  ( m  =  ( o  u.  ( ( NN  \  J )  X.  {
0 } ) )  ->  ( m  |`  J )  =  ( ( o  u.  (
( NN  \  J
)  X.  { 0 } ) )  |`  J ) )
102101eqeq2d 2481 . . . . . 6  |-  ( m  =  ( o  u.  ( ( NN  \  J )  X.  {
0 } ) )  ->  ( o  =  ( m  |`  J )  <-> 
o  =  ( ( o  u.  ( ( NN  \  J )  X.  { 0 } ) )  |`  J ) ) )
103102rspcev 3214 . . . . 5  |-  ( ( ( o  u.  (
( NN  \  J
)  X.  { 0 } ) )  e.  ( T  i^i  R
)  /\  o  =  ( ( o  u.  ( ( NN  \  J )  X.  {
0 } ) )  |`  J ) )  ->  E. m  e.  ( T  i^i  R ) o  =  ( m  |`  J ) )
10485, 100, 103syl2anc 661 . . . 4  |-  ( ( o  e.  ( NN0 
^m  J )  /\  o  e.  R )  ->  E. m  e.  ( T  i^i  R ) o  =  ( m  |`  J ) )
105 simpr 461 . . . . . . 7  |-  ( ( m  e.  ( T  i^i  R )  /\  o  =  ( m  |`  J ) )  -> 
o  =  ( m  |`  J ) )
106 simpl 457 . . . . . . . . . . . 12  |-  ( ( m  e.  ( T  i^i  R )  /\  o  =  ( m  |`  J ) )  ->  m  e.  ( T  i^i  R ) )
10777, 78, 79, 10, 80, 81, 82, 34, 83eulerpartlemt0 27976 . . . . . . . . . . . 12  |-  ( m  e.  ( T  i^i  R )  <->  ( m  e.  ( NN0  ^m  NN )  /\  ( `' m " NN )  e.  Fin  /\  ( `' m " NN )  C_  J ) )
108106, 107sylib 196 . . . . . . . . . . 11  |-  ( ( m  e.  ( T  i^i  R )  /\  o  =  ( m  |`  J ) )  -> 
( m  e.  ( NN0  ^m  NN )  /\  ( `' m " NN )  e.  Fin  /\  ( `' m " NN )  C_  J ) )
109108simp1d 1008 . . . . . . . . . 10  |-  ( ( m  e.  ( T  i^i  R )  /\  o  =  ( m  |`  J ) )  ->  m  e.  ( NN0  ^m  NN ) )
11022, 23elmap 7447 . . . . . . . . . 10  |-  ( m  e.  ( NN0  ^m  NN )  <->  m : NN --> NN0 )
111109, 110sylib 196 . . . . . . . . 9  |-  ( ( m  e.  ( T  i^i  R )  /\  o  =  ( m  |`  J ) )  ->  m : NN --> NN0 )
112 fssres 5751 . . . . . . . . 9  |-  ( ( m : NN --> NN0  /\  J  C_  NN )  -> 
( m  |`  J ) : J --> NN0 )
113111, 12, 112sylancl 662 . . . . . . . 8  |-  ( ( m  e.  ( T  i^i  R )  /\  o  =  ( m  |`  J ) )  -> 
( m  |`  J ) : J --> NN0 )
11423rabex 4598 . . . . . . . . . 10  |-  { z  e.  NN  |  -.  2  ||  z }  e.  _V
11510, 114eqeltri 2551 . . . . . . . . 9  |-  J  e. 
_V
11622, 115elmap 7447 . . . . . . . 8  |-  ( ( m  |`  J )  e.  ( NN0  ^m  J
)  <->  ( m  |`  J ) : J --> NN0 )
117113, 116sylibr 212 . . . . . . 7  |-  ( ( m  e.  ( T  i^i  R )  /\  o  =  ( m  |`  J ) )  -> 
( m  |`  J )  e.  ( NN0  ^m  J ) )
118105, 117eqeltrd 2555 . . . . . 6  |-  ( ( m  e.  ( T  i^i  R )  /\  o  =  ( m  |`  J ) )  -> 
o  e.  ( NN0 
^m  J ) )
119 ffun 5733 . . . . . . . . . 10  |-  ( m : NN --> NN0  ->  Fun  m )
120 respreima 6010 . . . . . . . . . 10  |-  ( Fun  m  ->  ( `' ( m  |`  J )
" NN )  =  ( ( `' m " NN )  i^i  J
) )
121111, 119, 1203syl 20 . . . . . . . . 9  |-  ( ( m  e.  ( T  i^i  R )  /\  o  =  ( m  |`  J ) )  -> 
( `' ( m  |`  J ) " NN )  =  ( ( `' m " NN )  i^i  J ) )
122108simp2d 1009 . . . . . . . . . 10  |-  ( ( m  e.  ( T  i^i  R )  /\  o  =  ( m  |`  J ) )  -> 
( `' m " NN )  e.  Fin )
123 infi 7743 . . . . . . . . . 10  |-  ( ( `' m " NN )  e.  Fin  ->  (
( `' m " NN )  i^i  J )  e.  Fin )
124122, 123syl 16 . . . . . . . . 9  |-  ( ( m  e.  ( T  i^i  R )  /\  o  =  ( m  |`  J ) )  -> 
( ( `' m " NN )  i^i  J
)  e.  Fin )
125121, 124eqeltrd 2555 . . . . . . . 8  |-  ( ( m  e.  ( T  i^i  R )  /\  o  =  ( m  |`  J ) )  -> 
( `' ( m  |`  J ) " NN )  e.  Fin )
126 vex 3116 . . . . . . . . . 10  |-  m  e. 
_V
127126resex 5317 . . . . . . . . 9  |-  ( m  |`  J )  e.  _V
128 cnveq 5176 . . . . . . . . . . 11  |-  ( f  =  ( m  |`  J )  ->  `' f  =  `' (
m  |`  J ) )
129128imaeq1d 5336 . . . . . . . . . 10  |-  ( f  =  ( m  |`  J )  ->  ( `' f " NN )  =  ( `' ( m  |`  J )
" NN ) )
130129eleq1d 2536 . . . . . . . . 9  |-  ( f  =  ( m  |`  J )  ->  (
( `' f " NN )  e.  Fin  <->  ( `' ( m  |`  J ) " NN )  e.  Fin )
)
131127, 130, 34elab2 3253 . . . . . . . 8  |-  ( ( m  |`  J )  e.  R  <->  ( `' ( m  |`  J ) " NN )  e.  Fin )
132125, 131sylibr 212 . . . . . . 7  |-  ( ( m  e.  ( T  i^i  R )  /\  o  =  ( m  |`  J ) )  -> 
( m  |`  J )  e.  R )
133105, 132eqeltrd 2555 . . . . . 6  |-  ( ( m  e.  ( T  i^i  R )  /\  o  =  ( m  |`  J ) )  -> 
o  e.  R )
134118, 133jca 532 . . . . 5  |-  ( ( m  e.  ( T  i^i  R )  /\  o  =  ( m  |`  J ) )  -> 
( o  e.  ( NN0  ^m  J )  /\  o  e.  R
) )
135134rexlimiva 2951 . . . 4  |-  ( E. m  e.  ( T  i^i  R ) o  =  ( m  |`  J )  ->  (
o  e.  ( NN0 
^m  J )  /\  o  e.  R )
)
136104, 135impbii 188 . . 3  |-  ( ( o  e.  ( NN0 
^m  J )  /\  o  e.  R )  <->  E. m  e.  ( T  i^i  R ) o  =  ( m  |`  J ) )
137136abbii 2601 . 2  |-  { o  |  ( o  e.  ( NN0  ^m  J
)  /\  o  e.  R ) }  =  { o  |  E. m  e.  ( T  i^i  R ) o  =  ( m  |`  J ) }
138 df-in 3483 . 2  |-  ( ( NN0  ^m  J )  i^i  R )  =  { o  |  ( o  e.  ( NN0 
^m  J )  /\  o  e.  R ) }
139 eqid 2467 . . 3  |-  ( m  e.  ( T  i^i  R )  |->  ( m  |`  J ) )  =  ( m  e.  ( T  i^i  R ) 
|->  ( m  |`  J ) )
140139rnmpt 5248 . 2  |-  ran  (
m  e.  ( T  i^i  R )  |->  ( m  |`  J )
)  =  { o  |  E. m  e.  ( T  i^i  R
) o  =  ( m  |`  J ) }
141137, 138, 1403eqtr4i 2506 1  |-  ( ( NN0  ^m  J )  i^i  R )  =  ran  ( m  e.  ( T  i^i  R
)  |->  ( m  |`  J ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   {cab 2452    =/= wne 2662   A.wral 2814   E.wrex 2815   {crab 2818   _Vcvv 3113    \ cdif 3473    u. cun 3474    i^i cin 3475    C_ wss 3476   (/)c0 3785   ~Pcpw 4010   {csn 4027   class class class wbr 4447   {copab 4504    |-> cmpt 4505    X. cxp 4997   `'ccnv 4998   dom cdm 4999   ran crn 5000    |` cres 5001   "cima 5002   Fun wfun 5582    Fn wfn 5583   -->wf 5584   ` cfv 5588  (class class class)co 6284    |-> cmpt2 6286   supp csupp 6901    ^m cmap 7420   Fincfn 7516   0cc0 9492   1c1 9493    x. cmul 9497    <_ cle 9629   NNcn 10536   2c2 10585   NN0cn0 10795   ZZcz 10864   ^cexp 12134   sum_csu 13471    || cdivides 13847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-om 6685  df-1st 6784  df-2nd 6785  df-recs 7042  df-rdg 7076  df-oadd 7134  df-er 7311  df-map 7422  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-nn 10537  df-2 10594  df-n0 10796  df-z 10865  df-dvds 13848
This theorem is referenced by:  eulerpartgbij  27979
  Copyright terms: Public domain W3C validator