Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartlemt Structured version   Visualization version   Unicode version

Theorem eulerpartlemt 29204
Description: Lemma for eulerpart 29215. (Contributed by Thierry Arnoux, 19-Sep-2017.)
Hypotheses
Ref Expression
eulerpart.p  |-  P  =  { f  e.  ( NN0  ^m  NN )  |  ( ( `' f " NN )  e.  Fin  /\  sum_ k  e.  NN  (
( f `  k
)  x.  k )  =  N ) }
eulerpart.o  |-  O  =  { g  e.  P  |  A. n  e.  ( `' g " NN )  -.  2  ||  n }
eulerpart.d  |-  D  =  { g  e.  P  |  A. n  e.  NN  ( g `  n
)  <_  1 }
eulerpart.j  |-  J  =  { z  e.  NN  |  -.  2  ||  z }
eulerpart.f  |-  F  =  ( x  e.  J ,  y  e.  NN0  |->  ( ( 2 ^ y )  x.  x
) )
eulerpart.h  |-  H  =  { r  e.  ( ( ~P NN0  i^i  Fin )  ^m  J )  |  ( r supp  (/) )  e. 
Fin }
eulerpart.m  |-  M  =  ( r  e.  H  |->  { <. x ,  y
>.  |  ( x  e.  J  /\  y  e.  ( r `  x
) ) } )
eulerpart.r  |-  R  =  { f  |  ( `' f " NN )  e.  Fin }
eulerpart.t  |-  T  =  { f  e.  ( NN0  ^m  NN )  |  ( `' f
" NN )  C_  J }
Assertion
Ref Expression
eulerpartlemt  |-  ( ( NN0  ^m  J )  i^i  R )  =  ran  ( m  e.  ( T  i^i  R
)  |->  ( m  |`  J ) )
Distinct variable groups:    f, m, J    R, m    T, m
Allowed substitution hints:    D( x, y, z, f, g, k, m, n, r)    P( x, y, z, f, g, k, m, n, r)    R( x, y, z, f, g, k, n, r)    T( x, y, z, f, g, k, n, r)    F( x, y, z, f, g, k, m, n, r)    H( x, y, z, f, g, k, m, n, r)    J( x, y, z, g, k, n, r)    M( x, y, z, f, g, k, m, n, r)    N( x, y, z, f, g, k, m, n, r)    O( x, y, z, f, g, k, m, n, r)

Proof of Theorem eulerpartlemt
Dummy variable  o is distinct from all other variables.
StepHypRef Expression
1 elmapi 7493 . . . . . . . . . 10  |-  ( o  e.  ( NN0  ^m  J )  ->  o : J --> NN0 )
21adantr 467 . . . . . . . . 9  |-  ( ( o  e.  ( NN0 
^m  J )  /\  o  e.  R )  ->  o : J --> NN0 )
3 c0ex 9637 . . . . . . . . . . 11  |-  0  e.  _V
43fconst 5769 . . . . . . . . . 10  |-  ( ( NN  \  J )  X.  { 0 } ) : ( NN 
\  J ) --> { 0 }
54a1i 11 . . . . . . . . 9  |-  ( ( o  e.  ( NN0 
^m  J )  /\  o  e.  R )  ->  ( ( NN  \  J )  X.  {
0 } ) : ( NN  \  J
) --> { 0 } )
6 disjdif 3839 . . . . . . . . . 10  |-  ( J  i^i  ( NN  \  J ) )  =  (/)
76a1i 11 . . . . . . . . 9  |-  ( ( o  e.  ( NN0 
^m  J )  /\  o  e.  R )  ->  ( J  i^i  ( NN  \  J ) )  =  (/) )
8 fun 5746 . . . . . . . . 9  |-  ( ( ( o : J --> NN0  /\  ( ( NN 
\  J )  X. 
{ 0 } ) : ( NN  \  J ) --> { 0 } )  /\  ( J  i^i  ( NN  \  J ) )  =  (/) )  ->  ( o  u.  ( ( NN 
\  J )  X. 
{ 0 } ) ) : ( J  u.  ( NN  \  J ) ) --> ( NN0  u.  { 0 } ) )
92, 5, 7, 8syl21anc 1267 . . . . . . . 8  |-  ( ( o  e.  ( NN0 
^m  J )  /\  o  e.  R )  ->  ( o  u.  (
( NN  \  J
)  X.  { 0 } ) ) : ( J  u.  ( NN  \  J ) ) --> ( NN0  u.  {
0 } ) )
10 eulerpart.j . . . . . . . . . . 11  |-  J  =  { z  e.  NN  |  -.  2  ||  z }
11 ssrab2 3514 . . . . . . . . . . 11  |-  { z  e.  NN  |  -.  2  ||  z }  C_  NN
1210, 11eqsstri 3462 . . . . . . . . . 10  |-  J  C_  NN
13 undif 3848 . . . . . . . . . 10  |-  ( J 
C_  NN  <->  ( J  u.  ( NN  \  J ) )  =  NN )
1412, 13mpbi 212 . . . . . . . . 9  |-  ( J  u.  ( NN  \  J ) )  =  NN
15 0nn0 10884 . . . . . . . . . . 11  |-  0  e.  NN0
16 snssi 4116 . . . . . . . . . . 11  |-  ( 0  e.  NN0  ->  { 0 }  C_  NN0 )
1715, 16ax-mp 5 . . . . . . . . . 10  |-  { 0 }  C_  NN0
18 ssequn2 3607 . . . . . . . . . 10  |-  ( { 0 }  C_  NN0  <->  ( NN0  u. 
{ 0 } )  =  NN0 )
1917, 18mpbi 212 . . . . . . . . 9  |-  ( NN0 
u.  { 0 } )  =  NN0
2014, 19feq23i 5722 . . . . . . . 8  |-  ( ( o  u.  ( ( NN  \  J )  X.  { 0 } ) ) : ( J  u.  ( NN 
\  J ) ) --> ( NN0  u.  {
0 } )  <->  ( o  u.  ( ( NN  \  J )  X.  {
0 } ) ) : NN --> NN0 )
219, 20sylib 200 . . . . . . 7  |-  ( ( o  e.  ( NN0 
^m  J )  /\  o  e.  R )  ->  ( o  u.  (
( NN  \  J
)  X.  { 0 } ) ) : NN --> NN0 )
22 nn0ex 10875 . . . . . . . 8  |-  NN0  e.  _V
23 nnex 10615 . . . . . . . 8  |-  NN  e.  _V
2422, 23elmap 7500 . . . . . . 7  |-  ( ( o  u.  ( ( NN  \  J )  X.  { 0 } ) )  e.  ( NN0  ^m  NN )  <-> 
( o  u.  (
( NN  \  J
)  X.  { 0 } ) ) : NN --> NN0 )
2521, 24sylibr 216 . . . . . 6  |-  ( ( o  e.  ( NN0 
^m  J )  /\  o  e.  R )  ->  ( o  u.  (
( NN  \  J
)  X.  { 0 } ) )  e.  ( NN0  ^m  NN ) )
26 cnvun 5241 . . . . . . . . 9  |-  `' ( o  u.  ( ( NN  \  J )  X.  { 0 } ) )  =  ( `' o  u.  `' ( ( NN  \  J )  X.  {
0 } ) )
2726imaeq1i 5165 . . . . . . . 8  |-  ( `' ( o  u.  (
( NN  \  J
)  X.  { 0 } ) ) " NN )  =  (
( `' o  u.  `' ( ( NN 
\  J )  X. 
{ 0 } ) ) " NN )
28 imaundir 5249 . . . . . . . 8  |-  ( ( `' o  u.  `' ( ( NN  \  J )  X.  {
0 } ) )
" NN )  =  ( ( `' o
" NN )  u.  ( `' ( ( NN  \  J )  X.  { 0 } ) " NN ) )
2927, 28eqtri 2473 . . . . . . 7  |-  ( `' ( o  u.  (
( NN  \  J
)  X.  { 0 } ) ) " NN )  =  (
( `' o " NN )  u.  ( `' ( ( NN 
\  J )  X. 
{ 0 } )
" NN ) )
30 vex 3048 . . . . . . . . . . 11  |-  o  e. 
_V
31 cnveq 5008 . . . . . . . . . . . . 13  |-  ( f  =  o  ->  `' f  =  `' o
)
3231imaeq1d 5167 . . . . . . . . . . . 12  |-  ( f  =  o  ->  ( `' f " NN )  =  ( `' o " NN ) )
3332eleq1d 2513 . . . . . . . . . . 11  |-  ( f  =  o  ->  (
( `' f " NN )  e.  Fin  <->  ( `' o " NN )  e.  Fin )
)
34 eulerpart.r . . . . . . . . . . 11  |-  R  =  { f  |  ( `' f " NN )  e.  Fin }
3530, 33, 34elab2 3188 . . . . . . . . . 10  |-  ( o  e.  R  <->  ( `' o " NN )  e. 
Fin )
3635biimpi 198 . . . . . . . . 9  |-  ( o  e.  R  ->  ( `' o " NN )  e.  Fin )
3736adantl 468 . . . . . . . 8  |-  ( ( o  e.  ( NN0 
^m  J )  /\  o  e.  R )  ->  ( `' o " NN )  e.  Fin )
38 cnvxp 5254 . . . . . . . . . . . . . 14  |-  `' ( ( NN  \  J
)  X.  { 0 } )  =  ( { 0 }  X.  ( NN  \  J ) )
3938dmeqi 5036 . . . . . . . . . . . . 13  |-  dom  `' ( ( NN  \  J )  X.  {
0 } )  =  dom  ( { 0 }  X.  ( NN 
\  J ) )
40 2nn 10767 . . . . . . . . . . . . . . 15  |-  2  e.  NN
41 2z 10969 . . . . . . . . . . . . . . . . 17  |-  2  e.  ZZ
42 iddvds 14316 . . . . . . . . . . . . . . . . 17  |-  ( 2  e.  ZZ  ->  2  ||  2 )
4341, 42ax-mp 5 . . . . . . . . . . . . . . . 16  |-  2  ||  2
44 breq2 4406 . . . . . . . . . . . . . . . . . . 19  |-  ( z  =  2  ->  (
2  ||  z  <->  2  ||  2 ) )
4544notbid 296 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  2  ->  ( -.  2  ||  z  <->  -.  2  ||  2 ) )
4645, 10elrab2 3198 . . . . . . . . . . . . . . . . 17  |-  ( 2  e.  J  <->  ( 2  e.  NN  /\  -.  2  ||  2 ) )
4746simprbi 466 . . . . . . . . . . . . . . . 16  |-  ( 2  e.  J  ->  -.  2  ||  2 )
4843, 47mt2 183 . . . . . . . . . . . . . . 15  |-  -.  2  e.  J
49 eldif 3414 . . . . . . . . . . . . . . 15  |-  ( 2  e.  ( NN  \  J )  <->  ( 2  e.  NN  /\  -.  2  e.  J )
)
5040, 48, 49mpbir2an 931 . . . . . . . . . . . . . 14  |-  2  e.  ( NN  \  J
)
51 ne0i 3737 . . . . . . . . . . . . . 14  |-  ( 2  e.  ( NN  \  J )  ->  ( NN  \  J )  =/=  (/) )
52 dmxp 5053 . . . . . . . . . . . . . 14  |-  ( ( NN  \  J )  =/=  (/)  ->  dom  ( { 0 }  X.  ( NN  \  J ) )  =  { 0 } )
5350, 51, 52mp2b 10 . . . . . . . . . . . . 13  |-  dom  ( { 0 }  X.  ( NN  \  J ) )  =  { 0 }
5439, 53eqtri 2473 . . . . . . . . . . . 12  |-  dom  `' ( ( NN  \  J )  X.  {
0 } )  =  { 0 }
5554ineq1i 3630 . . . . . . . . . . 11  |-  ( dom  `' ( ( NN 
\  J )  X. 
{ 0 } )  i^i  NN )  =  ( { 0 }  i^i  NN )
56 incom 3625 . . . . . . . . . . 11  |-  ( NN 
i^i  { 0 } )  =  ( { 0 }  i^i  NN )
57 0nnn 10641 . . . . . . . . . . . 12  |-  -.  0  e.  NN
58 disjsn 4032 . . . . . . . . . . . 12  |-  ( ( NN  i^i  { 0 } )  =  (/)  <->  -.  0  e.  NN )
5957, 58mpbir 213 . . . . . . . . . . 11  |-  ( NN 
i^i  { 0 } )  =  (/)
6055, 56, 593eqtr2i 2479 . . . . . . . . . 10  |-  ( dom  `' ( ( NN 
\  J )  X. 
{ 0 } )  i^i  NN )  =  (/)
61 imadisj 5187 . . . . . . . . . 10  |-  ( ( `' ( ( NN 
\  J )  X. 
{ 0 } )
" NN )  =  (/) 
<->  ( dom  `' ( ( NN  \  J
)  X.  { 0 } )  i^i  NN )  =  (/) )
6260, 61mpbir 213 . . . . . . . . 9  |-  ( `' ( ( NN  \  J )  X.  {
0 } ) " NN )  =  (/)
63 0fin 7799 . . . . . . . . 9  |-  (/)  e.  Fin
6462, 63eqeltri 2525 . . . . . . . 8  |-  ( `' ( ( NN  \  J )  X.  {
0 } ) " NN )  e.  Fin
65 unfi 7838 . . . . . . . 8  |-  ( ( ( `' o " NN )  e.  Fin  /\  ( `' ( ( NN  \  J )  X.  { 0 } ) " NN )  e.  Fin )  -> 
( ( `' o
" NN )  u.  ( `' ( ( NN  \  J )  X.  { 0 } ) " NN ) )  e.  Fin )
6637, 64, 65sylancl 668 . . . . . . 7  |-  ( ( o  e.  ( NN0 
^m  J )  /\  o  e.  R )  ->  ( ( `' o
" NN )  u.  ( `' ( ( NN  \  J )  X.  { 0 } ) " NN ) )  e.  Fin )
6729, 66syl5eqel 2533 . . . . . 6  |-  ( ( o  e.  ( NN0 
^m  J )  /\  o  e.  R )  ->  ( `' ( o  u.  ( ( NN 
\  J )  X. 
{ 0 } ) ) " NN )  e.  Fin )
68 cnvimass 5188 . . . . . . . . 9  |-  ( `' o " NN ) 
C_  dom  o
69 fdm 5733 . . . . . . . . . 10  |-  ( o : J --> NN0  ->  dom  o  =  J )
702, 69syl 17 . . . . . . . . 9  |-  ( ( o  e.  ( NN0 
^m  J )  /\  o  e.  R )  ->  dom  o  =  J )
7168, 70syl5sseq 3480 . . . . . . . 8  |-  ( ( o  e.  ( NN0 
^m  J )  /\  o  e.  R )  ->  ( `' o " NN )  C_  J )
72 0ss 3763 . . . . . . . . . 10  |-  (/)  C_  J
7362, 72eqsstri 3462 . . . . . . . . 9  |-  ( `' ( ( NN  \  J )  X.  {
0 } ) " NN )  C_  J
7473a1i 11 . . . . . . . 8  |-  ( ( o  e.  ( NN0 
^m  J )  /\  o  e.  R )  ->  ( `' ( ( NN  \  J )  X.  { 0 } ) " NN ) 
C_  J )
7571, 74unssd 3610 . . . . . . 7  |-  ( ( o  e.  ( NN0 
^m  J )  /\  o  e.  R )  ->  ( ( `' o
" NN )  u.  ( `' ( ( NN  \  J )  X.  { 0 } ) " NN ) )  C_  J )
7629, 75syl5eqss 3476 . . . . . 6  |-  ( ( o  e.  ( NN0 
^m  J )  /\  o  e.  R )  ->  ( `' ( o  u.  ( ( NN 
\  J )  X. 
{ 0 } ) ) " NN ) 
C_  J )
77 eulerpart.p . . . . . . 7  |-  P  =  { f  e.  ( NN0  ^m  NN )  |  ( ( `' f " NN )  e.  Fin  /\  sum_ k  e.  NN  (
( f `  k
)  x.  k )  =  N ) }
78 eulerpart.o . . . . . . 7  |-  O  =  { g  e.  P  |  A. n  e.  ( `' g " NN )  -.  2  ||  n }
79 eulerpart.d . . . . . . 7  |-  D  =  { g  e.  P  |  A. n  e.  NN  ( g `  n
)  <_  1 }
80 eulerpart.f . . . . . . 7  |-  F  =  ( x  e.  J ,  y  e.  NN0  |->  ( ( 2 ^ y )  x.  x
) )
81 eulerpart.h . . . . . . 7  |-  H  =  { r  e.  ( ( ~P NN0  i^i  Fin )  ^m  J )  |  ( r supp  (/) )  e. 
Fin }
82 eulerpart.m . . . . . . 7  |-  M  =  ( r  e.  H  |->  { <. x ,  y
>.  |  ( x  e.  J  /\  y  e.  ( r `  x
) ) } )
83 eulerpart.t . . . . . . 7  |-  T  =  { f  e.  ( NN0  ^m  NN )  |  ( `' f
" NN )  C_  J }
8477, 78, 79, 10, 80, 81, 82, 34, 83eulerpartlemt0 29202 . . . . . 6  |-  ( ( o  u.  ( ( NN  \  J )  X.  { 0 } ) )  e.  ( T  i^i  R )  <-> 
( ( o  u.  ( ( NN  \  J )  X.  {
0 } ) )  e.  ( NN0  ^m  NN )  /\  ( `' ( o  u.  ( ( NN  \  J )  X.  {
0 } ) )
" NN )  e. 
Fin  /\  ( `' ( o  u.  (
( NN  \  J
)  X.  { 0 } ) ) " NN )  C_  J ) )
8525, 67, 76, 84syl3anbrc 1192 . . . . 5  |-  ( ( o  e.  ( NN0 
^m  J )  /\  o  e.  R )  ->  ( o  u.  (
( NN  \  J
)  X.  { 0 } ) )  e.  ( T  i^i  R
) )
86 resundir 5119 . . . . . 6  |-  ( ( o  u.  ( ( NN  \  J )  X.  { 0 } ) )  |`  J )  =  ( ( o  |`  J )  u.  (
( ( NN  \  J )  X.  {
0 } )  |`  J ) )
87 ffn 5728 . . . . . . . 8  |-  ( o : J --> NN0  ->  o  Fn  J )
88 fnresdm 5685 . . . . . . . . 9  |-  ( o  Fn  J  ->  (
o  |`  J )  =  o )
89 incom 3625 . . . . . . . . . . . 12  |-  ( ( NN  \  J )  i^i  J )  =  ( J  i^i  ( NN  \  J ) )
9089, 6eqtri 2473 . . . . . . . . . . 11  |-  ( ( NN  \  J )  i^i  J )  =  (/)
91 fnconstg 5771 . . . . . . . . . . . 12  |-  ( 0  e.  NN0  ->  ( ( NN  \  J )  X.  { 0 } )  Fn  ( NN 
\  J ) )
92 fnresdisj 5686 . . . . . . . . . . . 12  |-  ( ( ( NN  \  J
)  X.  { 0 } )  Fn  ( NN  \  J )  -> 
( ( ( NN 
\  J )  i^i 
J )  =  (/)  <->  (
( ( NN  \  J )  X.  {
0 } )  |`  J )  =  (/) ) )
9315, 91, 92mp2b 10 . . . . . . . . . . 11  |-  ( ( ( NN  \  J
)  i^i  J )  =  (/)  <->  ( ( ( NN  \  J )  X.  { 0 } )  |`  J )  =  (/) )
9490, 93mpbi 212 . . . . . . . . . 10  |-  ( ( ( NN  \  J
)  X.  { 0 } )  |`  J )  =  (/)
9594a1i 11 . . . . . . . . 9  |-  ( o  Fn  J  ->  (
( ( NN  \  J )  X.  {
0 } )  |`  J )  =  (/) )
9688, 95uneq12d 3589 . . . . . . . 8  |-  ( o  Fn  J  ->  (
( o  |`  J )  u.  ( ( ( NN  \  J )  X.  { 0 } )  |`  J )
)  =  ( o  u.  (/) ) )
972, 87, 963syl 18 . . . . . . 7  |-  ( ( o  e.  ( NN0 
^m  J )  /\  o  e.  R )  ->  ( ( o  |`  J )  u.  (
( ( NN  \  J )  X.  {
0 } )  |`  J ) )  =  ( o  u.  (/) ) )
98 un0 3759 . . . . . . 7  |-  ( o  u.  (/) )  =  o
9997, 98syl6eq 2501 . . . . . 6  |-  ( ( o  e.  ( NN0 
^m  J )  /\  o  e.  R )  ->  ( ( o  |`  J )  u.  (
( ( NN  \  J )  X.  {
0 } )  |`  J ) )  =  o )
10086, 99syl5req 2498 . . . . 5  |-  ( ( o  e.  ( NN0 
^m  J )  /\  o  e.  R )  ->  o  =  ( ( o  u.  ( ( NN  \  J )  X.  { 0 } ) )  |`  J ) )
101 reseq1 5099 . . . . . . 7  |-  ( m  =  ( o  u.  ( ( NN  \  J )  X.  {
0 } ) )  ->  ( m  |`  J )  =  ( ( o  u.  (
( NN  \  J
)  X.  { 0 } ) )  |`  J ) )
102101eqeq2d 2461 . . . . . 6  |-  ( m  =  ( o  u.  ( ( NN  \  J )  X.  {
0 } ) )  ->  ( o  =  ( m  |`  J )  <-> 
o  =  ( ( o  u.  ( ( NN  \  J )  X.  { 0 } ) )  |`  J ) ) )
103102rspcev 3150 . . . . 5  |-  ( ( ( o  u.  (
( NN  \  J
)  X.  { 0 } ) )  e.  ( T  i^i  R
)  /\  o  =  ( ( o  u.  ( ( NN  \  J )  X.  {
0 } ) )  |`  J ) )  ->  E. m  e.  ( T  i^i  R ) o  =  ( m  |`  J ) )
10485, 100, 103syl2anc 667 . . . 4  |-  ( ( o  e.  ( NN0 
^m  J )  /\  o  e.  R )  ->  E. m  e.  ( T  i^i  R ) o  =  ( m  |`  J ) )
105 simpr 463 . . . . . . 7  |-  ( ( m  e.  ( T  i^i  R )  /\  o  =  ( m  |`  J ) )  -> 
o  =  ( m  |`  J ) )
106 simpl 459 . . . . . . . . . . . 12  |-  ( ( m  e.  ( T  i^i  R )  /\  o  =  ( m  |`  J ) )  ->  m  e.  ( T  i^i  R ) )
10777, 78, 79, 10, 80, 81, 82, 34, 83eulerpartlemt0 29202 . . . . . . . . . . . 12  |-  ( m  e.  ( T  i^i  R )  <->  ( m  e.  ( NN0  ^m  NN )  /\  ( `' m " NN )  e.  Fin  /\  ( `' m " NN )  C_  J ) )
108106, 107sylib 200 . . . . . . . . . . 11  |-  ( ( m  e.  ( T  i^i  R )  /\  o  =  ( m  |`  J ) )  -> 
( m  e.  ( NN0  ^m  NN )  /\  ( `' m " NN )  e.  Fin  /\  ( `' m " NN )  C_  J ) )
109108simp1d 1020 . . . . . . . . . 10  |-  ( ( m  e.  ( T  i^i  R )  /\  o  =  ( m  |`  J ) )  ->  m  e.  ( NN0  ^m  NN ) )
11022, 23elmap 7500 . . . . . . . . . 10  |-  ( m  e.  ( NN0  ^m  NN )  <->  m : NN --> NN0 )
111109, 110sylib 200 . . . . . . . . 9  |-  ( ( m  e.  ( T  i^i  R )  /\  o  =  ( m  |`  J ) )  ->  m : NN --> NN0 )
112 fssres 5749 . . . . . . . . 9  |-  ( ( m : NN --> NN0  /\  J  C_  NN )  -> 
( m  |`  J ) : J --> NN0 )
113111, 12, 112sylancl 668 . . . . . . . 8  |-  ( ( m  e.  ( T  i^i  R )  /\  o  =  ( m  |`  J ) )  -> 
( m  |`  J ) : J --> NN0 )
11410, 23rabex2 4556 . . . . . . . . 9  |-  J  e. 
_V
11522, 114elmap 7500 . . . . . . . 8  |-  ( ( m  |`  J )  e.  ( NN0  ^m  J
)  <->  ( m  |`  J ) : J --> NN0 )
116113, 115sylibr 216 . . . . . . 7  |-  ( ( m  e.  ( T  i^i  R )  /\  o  =  ( m  |`  J ) )  -> 
( m  |`  J )  e.  ( NN0  ^m  J ) )
117105, 116eqeltrd 2529 . . . . . 6  |-  ( ( m  e.  ( T  i^i  R )  /\  o  =  ( m  |`  J ) )  -> 
o  e.  ( NN0 
^m  J ) )
118 ffun 5731 . . . . . . . . . 10  |-  ( m : NN --> NN0  ->  Fun  m )
119 respreima 6009 . . . . . . . . . 10  |-  ( Fun  m  ->  ( `' ( m  |`  J )
" NN )  =  ( ( `' m " NN )  i^i  J
) )
120111, 118, 1193syl 18 . . . . . . . . 9  |-  ( ( m  e.  ( T  i^i  R )  /\  o  =  ( m  |`  J ) )  -> 
( `' ( m  |`  J ) " NN )  =  ( ( `' m " NN )  i^i  J ) )
121108simp2d 1021 . . . . . . . . . 10  |-  ( ( m  e.  ( T  i^i  R )  /\  o  =  ( m  |`  J ) )  -> 
( `' m " NN )  e.  Fin )
122 infi 7795 . . . . . . . . . 10  |-  ( ( `' m " NN )  e.  Fin  ->  (
( `' m " NN )  i^i  J )  e.  Fin )
123121, 122syl 17 . . . . . . . . 9  |-  ( ( m  e.  ( T  i^i  R )  /\  o  =  ( m  |`  J ) )  -> 
( ( `' m " NN )  i^i  J
)  e.  Fin )
124120, 123eqeltrd 2529 . . . . . . . 8  |-  ( ( m  e.  ( T  i^i  R )  /\  o  =  ( m  |`  J ) )  -> 
( `' ( m  |`  J ) " NN )  e.  Fin )
125 vex 3048 . . . . . . . . . 10  |-  m  e. 
_V
126125resex 5148 . . . . . . . . 9  |-  ( m  |`  J )  e.  _V
127 cnveq 5008 . . . . . . . . . . 11  |-  ( f  =  ( m  |`  J )  ->  `' f  =  `' (
m  |`  J ) )
128127imaeq1d 5167 . . . . . . . . . 10  |-  ( f  =  ( m  |`  J )  ->  ( `' f " NN )  =  ( `' ( m  |`  J )
" NN ) )
129128eleq1d 2513 . . . . . . . . 9  |-  ( f  =  ( m  |`  J )  ->  (
( `' f " NN )  e.  Fin  <->  ( `' ( m  |`  J ) " NN )  e.  Fin )
)
130126, 129, 34elab2 3188 . . . . . . . 8  |-  ( ( m  |`  J )  e.  R  <->  ( `' ( m  |`  J ) " NN )  e.  Fin )
131124, 130sylibr 216 . . . . . . 7  |-  ( ( m  e.  ( T  i^i  R )  /\  o  =  ( m  |`  J ) )  -> 
( m  |`  J )  e.  R )
132105, 131eqeltrd 2529 . . . . . 6  |-  ( ( m  e.  ( T  i^i  R )  /\  o  =  ( m  |`  J ) )  -> 
o  e.  R )
133117, 132jca 535 . . . . 5  |-  ( ( m  e.  ( T  i^i  R )  /\  o  =  ( m  |`  J ) )  -> 
( o  e.  ( NN0  ^m  J )  /\  o  e.  R
) )
134133rexlimiva 2875 . . . 4  |-  ( E. m  e.  ( T  i^i  R ) o  =  ( m  |`  J )  ->  (
o  e.  ( NN0 
^m  J )  /\  o  e.  R )
)
135104, 134impbii 191 . . 3  |-  ( ( o  e.  ( NN0 
^m  J )  /\  o  e.  R )  <->  E. m  e.  ( T  i^i  R ) o  =  ( m  |`  J ) )
136135abbii 2567 . 2  |-  { o  |  ( o  e.  ( NN0  ^m  J
)  /\  o  e.  R ) }  =  { o  |  E. m  e.  ( T  i^i  R ) o  =  ( m  |`  J ) }
137 df-in 3411 . 2  |-  ( ( NN0  ^m  J )  i^i  R )  =  { o  |  ( o  e.  ( NN0 
^m  J )  /\  o  e.  R ) }
138 eqid 2451 . . 3  |-  ( m  e.  ( T  i^i  R )  |->  ( m  |`  J ) )  =  ( m  e.  ( T  i^i  R ) 
|->  ( m  |`  J ) )
139138rnmpt 5080 . 2  |-  ran  (
m  e.  ( T  i^i  R )  |->  ( m  |`  J )
)  =  { o  |  E. m  e.  ( T  i^i  R
) o  =  ( m  |`  J ) }
140136, 137, 1393eqtr4i 2483 1  |-  ( ( NN0  ^m  J )  i^i  R )  =  ran  ( m  e.  ( T  i^i  R
)  |->  ( m  |`  J ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 188    /\ wa 371    /\ w3a 985    = wceq 1444    e. wcel 1887   {cab 2437    =/= wne 2622   A.wral 2737   E.wrex 2738   {crab 2741   _Vcvv 3045    \ cdif 3401    u. cun 3402    i^i cin 3403    C_ wss 3404   (/)c0 3731   ~Pcpw 3951   {csn 3968   class class class wbr 4402   {copab 4460    |-> cmpt 4461    X. cxp 4832   `'ccnv 4833   dom cdm 4834   ran crn 4835    |` cres 4836   "cima 4837   Fun wfun 5576    Fn wfn 5577   -->wf 5578   ` cfv 5582  (class class class)co 6290    |-> cmpt2 6292   supp csupp 6914    ^m cmap 7472   Fincfn 7569   0cc0 9539   1c1 9540    x. cmul 9544    <_ cle 9676   NNcn 10609   2c2 10659   NN0cn0 10869   ZZcz 10937   ^cexp 12272   sum_csu 13752    || cdvds 14305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583  ax-cnex 9595  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-nel 2625  df-ral 2742  df-rex 2743  df-reu 2744  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-pss 3420  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-tp 3973  df-op 3975  df-uni 4199  df-int 4235  df-iun 4280  df-br 4403  df-opab 4462  df-mpt 4463  df-tr 4498  df-eprel 4745  df-id 4749  df-po 4755  df-so 4756  df-fr 4793  df-we 4795  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-pred 5380  df-ord 5426  df-on 5427  df-lim 5428  df-suc 5429  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-riota 6252  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-om 6693  df-1st 6793  df-2nd 6794  df-wrecs 7028  df-recs 7090  df-rdg 7128  df-oadd 7186  df-er 7363  df-map 7474  df-en 7570  df-dom 7571  df-sdom 7572  df-fin 7573  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863  df-nn 10610  df-2 10668  df-n0 10870  df-z 10938  df-dvds 14306
This theorem is referenced by:  eulerpartgbij  29205
  Copyright terms: Public domain W3C validator