Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartlemsv2 Structured version   Unicode version

Theorem eulerpartlemsv2 26877
Description: Lemma for eulerpart 26901. Value of the sum of a finite partition  A (Contributed by Thierry Arnoux, 19-Aug-2018.)
Hypotheses
Ref Expression
eulerpartlems.r  |-  R  =  { f  |  ( `' f " NN )  e.  Fin }
eulerpartlems.s  |-  S  =  ( f  e.  ( ( NN0  ^m  NN )  i^i  R )  |->  sum_ k  e.  NN  (
( f `  k
)  x.  k ) )
Assertion
Ref Expression
eulerpartlemsv2  |-  ( A  e.  ( ( NN0 
^m  NN )  i^i 
R )  ->  ( S `  A )  =  sum_ k  e.  ( `' A " NN ) ( ( A `  k )  x.  k
) )
Distinct variable groups:    f, k, A    R, f, k
Allowed substitution hints:    S( f, k)

Proof of Theorem eulerpartlemsv2
StepHypRef Expression
1 eulerpartlems.r . . 3  |-  R  =  { f  |  ( `' f " NN )  e.  Fin }
2 eulerpartlems.s . . 3  |-  S  =  ( f  e.  ( ( NN0  ^m  NN )  i^i  R )  |->  sum_ k  e.  NN  (
( f `  k
)  x.  k ) )
31, 2eulerpartlemsv1 26875 . 2  |-  ( A  e.  ( ( NN0 
^m  NN )  i^i 
R )  ->  ( S `  A )  =  sum_ k  e.  NN  ( ( A `  k )  x.  k
) )
4 cnvimass 5289 . . . 4  |-  ( `' A " NN ) 
C_  dom  A
51, 2eulerpartlemelr 26876 . . . . . 6  |-  ( A  e.  ( ( NN0 
^m  NN )  i^i 
R )  ->  ( A : NN --> NN0  /\  ( `' A " NN )  e.  Fin ) )
65simpld 459 . . . . 5  |-  ( A  e.  ( ( NN0 
^m  NN )  i^i 
R )  ->  A : NN --> NN0 )
7 fdm 5663 . . . . 5  |-  ( A : NN --> NN0  ->  dom 
A  =  NN )
86, 7syl 16 . . . 4  |-  ( A  e.  ( ( NN0 
^m  NN )  i^i 
R )  ->  dom  A  =  NN )
94, 8syl5sseq 3504 . . 3  |-  ( A  e.  ( ( NN0 
^m  NN )  i^i 
R )  ->  ( `' A " NN ) 
C_  NN )
106adantr 465 . . . . . 6  |-  ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  k  e.  ( `' A " NN ) )  ->  A : NN --> NN0 )
119sselda 3456 . . . . . 6  |-  ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  k  e.  ( `' A " NN ) )  ->  k  e.  NN )
1210, 11ffvelrnd 5945 . . . . 5  |-  ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  k  e.  ( `' A " NN ) )  ->  ( A `  k )  e.  NN0 )
1311nnnn0d 10739 . . . . 5  |-  ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  k  e.  ( `' A " NN ) )  ->  k  e.  NN0 )
1412, 13nn0mulcld 10744 . . . 4  |-  ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  k  e.  ( `' A " NN ) )  ->  ( ( A `
 k )  x.  k )  e.  NN0 )
1514nn0cnd 10741 . . 3  |-  ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  k  e.  ( `' A " NN ) )  ->  ( ( A `
 k )  x.  k )  e.  CC )
16 simpr 461 . . . . . . . 8  |-  ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  k  e.  ( NN  \  ( `' A " NN ) ) )  -> 
k  e.  ( NN 
\  ( `' A " NN ) ) )
1716eldifad 3440 . . . . . . 7  |-  ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  k  e.  ( NN  \  ( `' A " NN ) ) )  -> 
k  e.  NN )
1816eldifbd 3441 . . . . . . . . 9  |-  ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  k  e.  ( NN  \  ( `' A " NN ) ) )  ->  -.  k  e.  ( `' A " NN ) )
196adantr 465 . . . . . . . . . 10  |-  ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  k  e.  ( NN  \  ( `' A " NN ) ) )  ->  A : NN --> NN0 )
20 ffn 5659 . . . . . . . . . 10  |-  ( A : NN --> NN0  ->  A  Fn  NN )
21 elpreima 5924 . . . . . . . . . 10  |-  ( A  Fn  NN  ->  (
k  e.  ( `' A " NN )  <-> 
( k  e.  NN  /\  ( A `  k
)  e.  NN ) ) )
2219, 20, 213syl 20 . . . . . . . . 9  |-  ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  k  e.  ( NN  \  ( `' A " NN ) ) )  -> 
( k  e.  ( `' A " NN )  <-> 
( k  e.  NN  /\  ( A `  k
)  e.  NN ) ) )
2318, 22mtbid 300 . . . . . . . 8  |-  ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  k  e.  ( NN  \  ( `' A " NN ) ) )  ->  -.  ( k  e.  NN  /\  ( A `  k
)  e.  NN ) )
24 imnan 422 . . . . . . . 8  |-  ( ( k  e.  NN  ->  -.  ( A `  k
)  e.  NN )  <->  -.  ( k  e.  NN  /\  ( A `  k
)  e.  NN ) )
2523, 24sylibr 212 . . . . . . 7  |-  ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  k  e.  ( NN  \  ( `' A " NN ) ) )  -> 
( k  e.  NN  ->  -.  ( A `  k )  e.  NN ) )
2617, 25mpd 15 . . . . . 6  |-  ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  k  e.  ( NN  \  ( `' A " NN ) ) )  ->  -.  ( A `  k
)  e.  NN )
2719, 17ffvelrnd 5945 . . . . . . 7  |-  ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  k  e.  ( NN  \  ( `' A " NN ) ) )  -> 
( A `  k
)  e.  NN0 )
28 elnn0 10684 . . . . . . 7  |-  ( ( A `  k )  e.  NN0  <->  ( ( A `
 k )  e.  NN  \/  ( A `
 k )  =  0 ) )
2927, 28sylib 196 . . . . . 6  |-  ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  k  e.  ( NN  \  ( `' A " NN ) ) )  -> 
( ( A `  k )  e.  NN  \/  ( A `  k
)  =  0 ) )
30 orel1 382 . . . . . 6  |-  ( -.  ( A `  k
)  e.  NN  ->  ( ( ( A `  k )  e.  NN  \/  ( A `  k
)  =  0 )  ->  ( A `  k )  =  0 ) )
3126, 29, 30sylc 60 . . . . 5  |-  ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  k  e.  ( NN  \  ( `' A " NN ) ) )  -> 
( A `  k
)  =  0 )
3231oveq1d 6207 . . . 4  |-  ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  k  e.  ( NN  \  ( `' A " NN ) ) )  -> 
( ( A `  k )  x.  k
)  =  ( 0  x.  k ) )
3317nncnd 10441 . . . . 5  |-  ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  k  e.  ( NN  \  ( `' A " NN ) ) )  -> 
k  e.  CC )
3433mul02d 9670 . . . 4  |-  ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  k  e.  ( NN  \  ( `' A " NN ) ) )  -> 
( 0  x.  k
)  =  0 )
3532, 34eqtrd 2492 . . 3  |-  ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  k  e.  ( NN  \  ( `' A " NN ) ) )  -> 
( ( A `  k )  x.  k
)  =  0 )
36 nnuz 10999 . . . . 5  |-  NN  =  ( ZZ>= `  1 )
3736eqimssi 3510 . . . 4  |-  NN  C_  ( ZZ>= `  1 )
3837a1i 11 . . 3  |-  ( A  e.  ( ( NN0 
^m  NN )  i^i 
R )  ->  NN  C_  ( ZZ>= `  1 )
)
399, 15, 35, 38sumss 13305 . 2  |-  ( A  e.  ( ( NN0 
^m  NN )  i^i 
R )  ->  sum_ k  e.  ( `' A " NN ) ( ( A `
 k )  x.  k )  =  sum_ k  e.  NN  (
( A `  k
)  x.  k ) )
403, 39eqtr4d 2495 1  |-  ( A  e.  ( ( NN0 
^m  NN )  i^i 
R )  ->  ( S `  A )  =  sum_ k  e.  ( `' A " NN ) ( ( A `  k )  x.  k
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1370    e. wcel 1758   {cab 2436    \ cdif 3425    i^i cin 3427    C_ wss 3428    |-> cmpt 4450   `'ccnv 4939   dom cdm 4940   "cima 4943    Fn wfn 5513   -->wf 5514   ` cfv 5518  (class class class)co 6192    ^m cmap 7316   Fincfn 7412   0cc0 9385   1c1 9386    x. cmul 9390   NNcn 10425   NN0cn0 10682   ZZ>=cuz 10964   sum_csu 13267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4503  ax-sep 4513  ax-nul 4521  ax-pow 4570  ax-pr 4631  ax-un 6474  ax-inf2 7950  ax-cnex 9441  ax-resscn 9442  ax-1cn 9443  ax-icn 9444  ax-addcl 9445  ax-addrcl 9446  ax-mulcl 9447  ax-mulrcl 9448  ax-mulcom 9449  ax-addass 9450  ax-mulass 9451  ax-distr 9452  ax-i2m1 9453  ax-1ne0 9454  ax-1rid 9455  ax-rnegex 9456  ax-rrecex 9457  ax-cnre 9458  ax-pre-lttri 9459  ax-pre-lttrn 9460  ax-pre-ltadd 9461  ax-pre-mulgt0 9462
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-fal 1376  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rmo 2803  df-rab 2804  df-v 3072  df-sbc 3287  df-csb 3389  df-dif 3431  df-un 3433  df-in 3435  df-ss 3442  df-pss 3444  df-nul 3738  df-if 3892  df-pw 3962  df-sn 3978  df-pr 3980  df-tp 3982  df-op 3984  df-uni 4192  df-int 4229  df-iun 4273  df-br 4393  df-opab 4451  df-mpt 4452  df-tr 4486  df-eprel 4732  df-id 4736  df-po 4741  df-so 4742  df-fr 4779  df-se 4780  df-we 4781  df-ord 4822  df-on 4823  df-lim 4824  df-suc 4825  df-xp 4946  df-rel 4947  df-cnv 4948  df-co 4949  df-dm 4950  df-rn 4951  df-res 4952  df-ima 4953  df-iota 5481  df-fun 5520  df-fn 5521  df-f 5522  df-f1 5523  df-fo 5524  df-f1o 5525  df-fv 5526  df-isom 5527  df-riota 6153  df-ov 6195  df-oprab 6196  df-mpt2 6197  df-om 6579  df-1st 6679  df-2nd 6680  df-recs 6934  df-rdg 6968  df-1o 7022  df-oadd 7026  df-er 7203  df-map 7318  df-en 7413  df-dom 7414  df-sdom 7415  df-fin 7416  df-oi 7827  df-card 8212  df-pnf 9523  df-mnf 9524  df-xr 9525  df-ltxr 9526  df-le 9527  df-sub 9700  df-neg 9701  df-div 10097  df-nn 10426  df-2 10483  df-n0 10683  df-z 10750  df-uz 10965  df-rp 11095  df-fz 11541  df-fzo 11652  df-seq 11910  df-exp 11969  df-hash 12207  df-cj 12692  df-re 12693  df-im 12694  df-sqr 12828  df-abs 12829  df-clim 13070  df-sum 13268
This theorem is referenced by:  eulerpartlemsf  26878  eulerpartlemgs2  26899
  Copyright terms: Public domain W3C validator