Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartlems Structured version   Unicode version

Theorem eulerpartlems 28124
Description: Lemma for eulerpart 28146. (Contributed by Thierry Arnoux, 6-Aug-2018.) (Revised by Thierry Arnoux, 1-Sep-2019.)
Hypotheses
Ref Expression
eulerpartlems.r  |-  R  =  { f  |  ( `' f " NN )  e.  Fin }
eulerpartlems.s  |-  S  =  ( f  e.  ( ( NN0  ^m  NN )  i^i  R )  |->  sum_ k  e.  NN  (
( f `  k
)  x.  k ) )
Assertion
Ref Expression
eulerpartlems  |-  ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  t  e.  ( ZZ>= `  ( ( S `  A )  +  1 ) ) )  -> 
( A `  t
)  =  0 )
Distinct variable groups:    f, k, A    R, f, k    t,
k, A    t, R    t, S
Allowed substitution hints:    S( f, k)

Proof of Theorem eulerpartlems
Dummy variables  l  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eulerpartlems.r . . . . . 6  |-  R  =  { f  |  ( `' f " NN )  e.  Fin }
2 eulerpartlems.s . . . . . 6  |-  S  =  ( f  e.  ( ( NN0  ^m  NN )  i^i  R )  |->  sum_ k  e.  NN  (
( f `  k
)  x.  k ) )
31, 2eulerpartlemsf 28123 . . . . 5  |-  S :
( ( NN0  ^m  NN )  i^i  R ) --> NN0
43ffvelrni 6031 . . . 4  |-  ( A  e.  ( ( NN0 
^m  NN )  i^i 
R )  ->  ( S `  A )  e.  NN0 )
5 nndiffz1 27419 . . . . 5  |-  ( ( S `  A )  e.  NN0  ->  ( NN 
\  ( 1 ... ( S `  A
) ) )  =  ( ZZ>= `  ( ( S `  A )  +  1 ) ) )
65eleq2d 2537 . . . 4  |-  ( ( S `  A )  e.  NN0  ->  ( t  e.  ( NN  \ 
( 1 ... ( S `  A )
) )  <->  t  e.  ( ZZ>= `  ( ( S `  A )  +  1 ) ) ) )
74, 6syl 16 . . 3  |-  ( A  e.  ( ( NN0 
^m  NN )  i^i 
R )  ->  (
t  e.  ( NN 
\  ( 1 ... ( S `  A
) ) )  <->  t  e.  ( ZZ>= `  ( ( S `  A )  +  1 ) ) ) )
87pm5.32i 637 . 2  |-  ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  t  e.  ( NN  \  ( 1 ... ( S `  A )
) ) )  <->  ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  t  e.  (
ZZ>= `  ( ( S `
 A )  +  1 ) ) ) )
9 simpr 461 . . . . . 6  |-  ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  t  e.  ( NN  \  ( 1 ... ( S `  A )
) ) )  -> 
t  e.  ( NN 
\  ( 1 ... ( S `  A
) ) ) )
10 eldif 3491 . . . . . 6  |-  ( t  e.  ( NN  \ 
( 1 ... ( S `  A )
) )  <->  ( t  e.  NN  /\  -.  t  e.  ( 1 ... ( S `  A )
) ) )
119, 10sylib 196 . . . . 5  |-  ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  t  e.  ( NN  \  ( 1 ... ( S `  A )
) ) )  -> 
( t  e.  NN  /\ 
-.  t  e.  ( 1 ... ( S `
 A ) ) ) )
1211simpld 459 . . . 4  |-  ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  t  e.  ( NN  \  ( 1 ... ( S `  A )
) ) )  -> 
t  e.  NN )
131, 2eulerpartlemelr 28121 . . . . . 6  |-  ( A  e.  ( ( NN0 
^m  NN )  i^i 
R )  ->  ( A : NN --> NN0  /\  ( `' A " NN )  e.  Fin ) )
1413simpld 459 . . . . 5  |-  ( A  e.  ( ( NN0 
^m  NN )  i^i 
R )  ->  A : NN --> NN0 )
1514ffvelrnda 6032 . . . 4  |-  ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  t  e.  NN )  ->  ( A `  t
)  e.  NN0 )
1612, 15syldan 470 . . 3  |-  ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  t  e.  ( NN  \  ( 1 ... ( S `  A )
) ) )  -> 
( A `  t
)  e.  NN0 )
17 simpl 457 . . . 4  |-  ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  t  e.  ( NN  \  ( 1 ... ( S `  A )
) ) )  ->  A  e.  ( ( NN0  ^m  NN )  i^i 
R ) )
184adantr 465 . . . . 5  |-  ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  t  e.  ( NN  \  ( 1 ... ( S `  A )
) ) )  -> 
( S `  A
)  e.  NN0 )
1911simprd 463 . . . . 5  |-  ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  t  e.  ( NN  \  ( 1 ... ( S `  A )
) ) )  ->  -.  t  e.  (
1 ... ( S `  A ) ) )
20 simpl 457 . . . . . . . . . 10  |-  ( ( t  e.  NN  /\  ( S `  A )  e.  NN0 )  -> 
t  e.  NN )
21 nnuz 11129 . . . . . . . . . 10  |-  NN  =  ( ZZ>= `  1 )
2220, 21syl6eleq 2565 . . . . . . . . 9  |-  ( ( t  e.  NN  /\  ( S `  A )  e.  NN0 )  -> 
t  e.  ( ZZ>= ` 
1 ) )
23 simpr 461 . . . . . . . . . 10  |-  ( ( t  e.  NN  /\  ( S `  A )  e.  NN0 )  -> 
( S `  A
)  e.  NN0 )
2423nn0zd 10976 . . . . . . . . 9  |-  ( ( t  e.  NN  /\  ( S `  A )  e.  NN0 )  -> 
( S `  A
)  e.  ZZ )
25 elfz5 11692 . . . . . . . . 9  |-  ( ( t  e.  ( ZZ>= ` 
1 )  /\  ( S `  A )  e.  ZZ )  ->  (
t  e.  ( 1 ... ( S `  A ) )  <->  t  <_  ( S `  A ) ) )
2622, 24, 25syl2anc 661 . . . . . . . 8  |-  ( ( t  e.  NN  /\  ( S `  A )  e.  NN0 )  -> 
( t  e.  ( 1 ... ( S `
 A ) )  <-> 
t  <_  ( S `  A ) ) )
2726notbid 294 . . . . . . 7  |-  ( ( t  e.  NN  /\  ( S `  A )  e.  NN0 )  -> 
( -.  t  e.  ( 1 ... ( S `  A )
)  <->  -.  t  <_  ( S `  A ) ) )
2823nn0red 10865 . . . . . . . 8  |-  ( ( t  e.  NN  /\  ( S `  A )  e.  NN0 )  -> 
( S `  A
)  e.  RR )
2920nnred 10563 . . . . . . . 8  |-  ( ( t  e.  NN  /\  ( S `  A )  e.  NN0 )  -> 
t  e.  RR )
3028, 29ltnled 9743 . . . . . . 7  |-  ( ( t  e.  NN  /\  ( S `  A )  e.  NN0 )  -> 
( ( S `  A )  <  t  <->  -.  t  <_  ( S `  A ) ) )
3127, 30bitr4d 256 . . . . . 6  |-  ( ( t  e.  NN  /\  ( S `  A )  e.  NN0 )  -> 
( -.  t  e.  ( 1 ... ( S `  A )
)  <->  ( S `  A )  <  t
) )
3231biimpa 484 . . . . 5  |-  ( ( ( t  e.  NN  /\  ( S `  A
)  e.  NN0 )  /\  -.  t  e.  ( 1 ... ( S `
 A ) ) )  ->  ( S `  A )  <  t
)
3312, 18, 19, 32syl21anc 1227 . . . 4  |-  ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  t  e.  ( NN  \  ( 1 ... ( S `  A )
) ) )  -> 
( S `  A
)  <  t )
34 fveq2 5872 . . . . . . . . . . . 12  |-  ( k  =  t  ->  ( A `  k )  =  ( A `  t ) )
35 id 22 . . . . . . . . . . . 12  |-  ( k  =  t  ->  k  =  t )
3634, 35oveq12d 6313 . . . . . . . . . . 11  |-  ( k  =  t  ->  (
( A `  k
)  x.  k )  =  ( ( A `
 t )  x.  t ) )
3736cbvsumv 13498 . . . . . . . . . 10  |-  sum_ k  e.  NN  ( ( A `
 k )  x.  k )  =  sum_ t  e.  NN  (
( A `  t
)  x.  t )
381, 2eulerpartlemsv1 28120 . . . . . . . . . . 11  |-  ( A  e.  ( ( NN0 
^m  NN )  i^i 
R )  ->  ( S `  A )  =  sum_ k  e.  NN  ( ( A `  k )  x.  k
) )
3938eqcomd 2475 . . . . . . . . . 10  |-  ( A  e.  ( ( NN0 
^m  NN )  i^i 
R )  ->  sum_ k  e.  NN  ( ( A `
 k )  x.  k )  =  ( S `  A ) )
4037, 39syl5eqr 2522 . . . . . . . . 9  |-  ( A  e.  ( ( NN0 
^m  NN )  i^i 
R )  ->  sum_ t  e.  NN  ( ( A `
 t )  x.  t )  =  ( S `  A ) )
41 breq2 4457 . . . . . . . . . . . . 13  |-  ( t  =  l  ->  (
( S `  A
)  <  t  <->  ( S `  A )  <  l
) )
42 fveq2 5872 . . . . . . . . . . . . . 14  |-  ( t  =  l  ->  ( A `  t )  =  ( A `  l ) )
4342breq2d 4465 . . . . . . . . . . . . 13  |-  ( t  =  l  ->  (
0  <  ( A `  t )  <->  0  <  ( A `  l ) ) )
4441, 43anbi12d 710 . . . . . . . . . . . 12  |-  ( t  =  l  ->  (
( ( S `  A )  <  t  /\  0  <  ( A `
 t ) )  <-> 
( ( S `  A )  <  l  /\  0  <  ( A `
 l ) ) ) )
4544cbvrexv 3094 . . . . . . . . . . 11  |-  ( E. t  e.  NN  (
( S `  A
)  <  t  /\  0  <  ( A `  t ) )  <->  E. l  e.  NN  ( ( S `
 A )  < 
l  /\  0  <  ( A `  l ) ) )
464adantr 465 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  E. l  e.  NN  (
( S `  A
)  <  l  /\  0  <  ( A `  l ) ) )  ->  ( S `  A )  e.  NN0 )
4746nn0red 10865 . . . . . . . . . . . . 13  |-  ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  E. l  e.  NN  (
( S `  A
)  <  l  /\  0  <  ( A `  l ) ) )  ->  ( S `  A )  e.  RR )
484ad2antrr 725 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  l  e.  NN )  /\  ( ( S `  A )  <  l  /\  0  <  ( A `
 l ) ) )  ->  ( S `  A )  e.  NN0 )
4948nn0red 10865 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  l  e.  NN )  /\  ( ( S `  A )  <  l  /\  0  <  ( A `
 l ) ) )  ->  ( S `  A )  e.  RR )
50 simpr 461 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  l  e.  NN )  ->  l  e.  NN )
5150adantr 465 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  l  e.  NN )  /\  ( ( S `  A )  <  l  /\  0  <  ( A `
 l ) ) )  ->  l  e.  NN )
5251nnred 10563 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  l  e.  NN )  /\  ( ( S `  A )  <  l  /\  0  <  ( A `
 l ) ) )  ->  l  e.  RR )
53 1z 10906 . . . . . . . . . . . . . . . . . . . . 21  |-  1  e.  ZZ
5453a1i 11 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  l  e.  NN )  ->  1  e.  ZZ )
5514ad2antrr 725 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  l  e.  NN )  /\  t  e.  NN )  ->  A : NN --> NN0 )
56 simpr 461 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  l  e.  NN )  /\  t  e.  NN )  ->  t  e.  NN )
57 eqidd 2468 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A : NN --> NN0  /\  t  e.  NN )  ->  ( m  e.  NN  |->  ( ( A `  m )  x.  m
) )  =  ( m  e.  NN  |->  ( ( A `  m
)  x.  m ) ) )
58 simpr 461 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( A : NN --> NN0  /\  t  e.  NN )  /\  m  =  t )  ->  m  =  t )
5958fveq2d 5876 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( A : NN --> NN0  /\  t  e.  NN )  /\  m  =  t )  ->  ( A `  m )  =  ( A `  t ) )
6059, 58oveq12d 6313 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( A : NN --> NN0  /\  t  e.  NN )  /\  m  =  t )  ->  ( ( A `  m )  x.  m )  =  ( ( A `  t
)  x.  t ) )
61 simpr 461 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A : NN --> NN0  /\  t  e.  NN )  ->  t  e.  NN )
62 ffvelrn 6030 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( A : NN --> NN0  /\  t  e.  NN )  ->  ( A `  t
)  e.  NN0 )
6361nnnn0d 10864 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( A : NN --> NN0  /\  t  e.  NN )  ->  t  e.  NN0 )
6462, 63nn0mulcld 10869 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A : NN --> NN0  /\  t  e.  NN )  ->  ( ( A `  t )  x.  t
)  e.  NN0 )
6557, 60, 61, 64fvmptd 5962 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( A : NN --> NN0  /\  t  e.  NN )  ->  ( ( m  e.  NN  |->  ( ( A `
 m )  x.  m ) ) `  t )  =  ( ( A `  t
)  x.  t ) )
6655, 56, 65syl2anc 661 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  l  e.  NN )  /\  t  e.  NN )  ->  ( ( m  e.  NN  |->  ( ( A `  m )  x.  m ) ) `
 t )  =  ( ( A `  t )  x.  t
) )
6714adantr 465 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  l  e.  NN )  ->  A : NN --> NN0 )
6867ffvelrnda 6032 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  l  e.  NN )  /\  t  e.  NN )  ->  ( A `  t )  e.  NN0 )
6956nnnn0d 10864 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  l  e.  NN )  /\  t  e.  NN )  ->  t  e.  NN0 )
7068, 69nn0mulcld 10869 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  l  e.  NN )  /\  t  e.  NN )  ->  ( ( A `
 t )  x.  t )  e.  NN0 )
7170nn0red 10865 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  l  e.  NN )  /\  t  e.  NN )  ->  ( ( A `
 t )  x.  t )  e.  RR )
72 fveq2 5872 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( m  =  t  ->  ( A `  m )  =  ( A `  t ) )
73 id 22 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( m  =  t  ->  m  =  t )
7472, 73oveq12d 6313 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( m  =  t  ->  (
( A `  m
)  x.  m )  =  ( ( A `
 t )  x.  t ) )
7574cbvmptv 4544 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( m  e.  NN  |->  ( ( A `  m )  x.  m ) )  =  ( t  e.  NN  |->  ( ( A `
 t )  x.  t ) )
7670, 75fmptd 6056 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  l  e.  NN )  ->  ( m  e.  NN  |->  ( ( A `  m )  x.  m
) ) : NN --> NN0 )
77 nn0sscn 10812 . . . . . . . . . . . . . . . . . . . . . 22  |-  NN0  C_  CC
78 fss 5745 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( m  e.  NN  |->  ( ( A `  m )  x.  m
) ) : NN --> NN0  /\  NN0  C_  CC )  ->  ( m  e.  NN  |->  ( ( A `
 m )  x.  m ) ) : NN --> CC )
7976, 77, 78sylancl 662 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  l  e.  NN )  ->  ( m  e.  NN  |->  ( ( A `  m )  x.  m
) ) : NN --> CC )
80 nnex 10554 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  NN  e.  _V
81 0nn0 10822 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  0  e.  NN0
82 eqid 2467 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( CC 
\  { 0 } )  =  ( CC 
\  { 0 } )
8382ffs2 27374 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( NN  e.  _V  /\  0  e.  NN0  /\  (
m  e.  NN  |->  ( ( A `  m
)  x.  m ) ) : NN --> CC )  ->  ( ( m  e.  NN  |->  ( ( A `  m )  x.  m ) ) supp  0 )  =  ( `' ( m  e.  NN  |->  ( ( A `
 m )  x.  m ) ) "
( CC  \  {
0 } ) ) )
8480, 81, 83mp3an12 1314 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( m  e.  NN  |->  ( ( A `  m
)  x.  m ) ) : NN --> CC  ->  ( ( m  e.  NN  |->  ( ( A `  m )  x.  m
) ) supp  0 )  =  ( `' ( m  e.  NN  |->  ( ( A `  m
)  x.  m ) ) " ( CC 
\  { 0 } ) ) )
8579, 84syl 16 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  l  e.  NN )  ->  ( ( m  e.  NN  |->  ( ( A `
 m )  x.  m ) ) supp  0
)  =  ( `' ( m  e.  NN  |->  ( ( A `  m )  x.  m
) ) " ( CC  \  { 0 } ) ) )
86 frnnn0supp 10861 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( NN  e.  _V  /\  A : NN --> NN0 )  ->  ( A supp  0 )  =  ( `' A " NN ) )
8780, 86mpan 670 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( A : NN --> NN0  ->  ( A supp  0 )  =  ( `' A " NN ) )
8867, 87syl 16 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  l  e.  NN )  ->  ( A supp  0 )  =  ( `' A " NN ) )
8913simprd 463 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( A  e.  ( ( NN0 
^m  NN )  i^i 
R )  ->  ( `' A " NN )  e.  Fin )
9089adantr 465 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  l  e.  NN )  ->  ( `' A " NN )  e.  Fin )
9188, 90eqeltrd 2555 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  l  e.  NN )  ->  ( A supp  0 )  e.  Fin )
9280a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( A : NN --> NN0  ->  NN  e.  _V )
9381a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( A : NN --> NN0  ->  0  e.  NN0 )
94 ffn 5737 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( A : NN --> NN0  ->  A  Fn  NN )
95 simp3 998 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( A : NN --> NN0  /\  t  e.  NN  /\  ( A `  t )  =  0 )  -> 
( A `  t
)  =  0 )
9695oveq1d 6310 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( A : NN --> NN0  /\  t  e.  NN  /\  ( A `  t )  =  0 )  -> 
( ( A `  t )  x.  t
)  =  ( 0  x.  t ) )
97 simp2 997 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( A : NN --> NN0  /\  t  e.  NN  /\  ( A `  t )  =  0 )  -> 
t  e.  NN )
9897nncnd 10564 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( A : NN --> NN0  /\  t  e.  NN  /\  ( A `  t )  =  0 )  -> 
t  e.  CC )
9998mul02d 9789 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( A : NN --> NN0  /\  t  e.  NN  /\  ( A `  t )  =  0 )  -> 
( 0  x.  t
)  =  0 )
10096, 99eqtrd 2508 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( A : NN --> NN0  /\  t  e.  NN  /\  ( A `  t )  =  0 )  -> 
( ( A `  t )  x.  t
)  =  0 )
10175, 92, 93, 94, 100suppss3 27373 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( A : NN --> NN0  ->  ( ( m  e.  NN  |->  ( ( A `  m )  x.  m
) ) supp  0 ) 
C_  ( A supp  0
) )
10267, 101syl 16 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  l  e.  NN )  ->  ( ( m  e.  NN  |->  ( ( A `
 m )  x.  m ) ) supp  0
)  C_  ( A supp  0 ) )
103 ssfi 7752 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( A supp  0 )  e.  Fin  /\  (
( m  e.  NN  |->  ( ( A `  m )  x.  m
) ) supp  0 ) 
C_  ( A supp  0
) )  ->  (
( m  e.  NN  |->  ( ( A `  m )  x.  m
) ) supp  0 )  e.  Fin )
10491, 102, 103syl2anc 661 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  l  e.  NN )  ->  ( ( m  e.  NN  |->  ( ( A `
 m )  x.  m ) ) supp  0
)  e.  Fin )
10585, 104eqeltrrd 2556 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  l  e.  NN )  ->  ( `' ( m  e.  NN  |->  ( ( A `  m )  x.  m ) )
" ( CC  \  { 0 } ) )  e.  Fin )
10621, 54, 79, 105fsumcvg4 27757 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  l  e.  NN )  ->  seq 1 (  +  ,  ( m  e.  NN  |->  ( ( A `
 m )  x.  m ) ) )  e.  dom  ~~>  )
10721, 54, 66, 71, 106isumrecl 13560 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  l  e.  NN )  -> 
sum_ t  e.  NN  ( ( A `  t )  x.  t
)  e.  RR )
108107adantr 465 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  l  e.  NN )  /\  ( ( S `  A )  <  l  /\  0  <  ( A `
 l ) ) )  ->  sum_ t  e.  NN  ( ( A `
 t )  x.  t )  e.  RR )
109 simprl 755 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  l  e.  NN )  /\  ( ( S `  A )  <  l  /\  0  <  ( A `
 l ) ) )  ->  ( S `  A )  <  l
)
11014ffvelrnda 6032 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  l  e.  NN )  ->  ( A `  l
)  e.  NN0 )
111110adantr 465 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  l  e.  NN )  /\  ( ( S `  A )  <  l  /\  0  <  ( A `
 l ) ) )  ->  ( A `  l )  e.  NN0 )
112111nn0red 10865 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  l  e.  NN )  /\  ( ( S `  A )  <  l  /\  0  <  ( A `
 l ) ) )  ->  ( A `  l )  e.  RR )
113112, 52remulcld 9636 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  l  e.  NN )  /\  ( ( S `  A )  <  l  /\  0  <  ( A `
 l ) ) )  ->  ( ( A `  l )  x.  l )  e.  RR )
11451nnnn0d 10864 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  l  e.  NN )  /\  ( ( S `  A )  <  l  /\  0  <  ( A `
 l ) ) )  ->  l  e.  NN0 )
115 nn0ge0 10833 . . . . . . . . . . . . . . . . . . . . 21  |-  ( l  e.  NN0  ->  0  <_ 
l )
116114, 115syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  l  e.  NN )  /\  ( ( S `  A )  <  l  /\  0  <  ( A `
 l ) ) )  ->  0  <_  l )
117 simprr 756 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  l  e.  NN )  /\  ( ( S `  A )  <  l  /\  0  <  ( A `
 l ) ) )  ->  0  <  ( A `  l ) )
118 elnnnn0b 10852 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A `  l )  e.  NN  <->  ( ( A `  l )  e.  NN0  /\  0  < 
( A `  l
) ) )
119 nnge1 10574 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A `  l )  e.  NN  ->  1  <_  ( A `  l
) )
120118, 119sylbir 213 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A `  l
)  e.  NN0  /\  0  <  ( A `  l ) )  -> 
1  <_  ( A `  l ) )
121111, 117, 120syl2anc 661 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  l  e.  NN )  /\  ( ( S `  A )  <  l  /\  0  <  ( A `
 l ) ) )  ->  1  <_  ( A `  l ) )
12252, 112, 116, 121lemulge12d 10496 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  l  e.  NN )  /\  ( ( S `  A )  <  l  /\  0  <  ( A `
 l ) ) )  ->  l  <_  ( ( A `  l
)  x.  l ) )
123110nn0cnd 10866 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  l  e.  NN )  ->  ( A `  l
)  e.  CC )
12450nncnd 10564 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  l  e.  NN )  ->  l  e.  CC )
125123, 124mulcld 9628 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  l  e.  NN )  ->  ( ( A `  l )  x.  l
)  e.  CC )
126 id 22 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( t  =  l  ->  t  =  l )
12742, 126oveq12d 6313 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( t  =  l  ->  (
( A `  t
)  x.  t )  =  ( ( A `
 l )  x.  l ) )
128127sumsn 13543 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( l  e.  NN  /\  ( ( A `  l )  x.  l
)  e.  CC )  ->  sum_ t  e.  {
l }  ( ( A `  t )  x.  t )  =  ( ( A `  l )  x.  l
) )
12950, 125, 128syl2anc 661 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  l  e.  NN )  -> 
sum_ t  e.  {
l }  ( ( A `  t )  x.  t )  =  ( ( A `  l )  x.  l
) )
130 snfi 7608 . . . . . . . . . . . . . . . . . . . . . . 23  |-  { l }  e.  Fin
131130a1i 11 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  l  e.  NN )  ->  { l }  e.  Fin )
13250snssd 4178 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  l  e.  NN )  ->  { l }  C_  NN )
13370nn0ge0d 10867 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  l  e.  NN )  /\  t  e.  NN )  ->  0  <_  (
( A `  t
)  x.  t ) )
13421, 54, 131, 132, 66, 71, 133, 106isumless 13637 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  l  e.  NN )  -> 
sum_ t  e.  {
l }  ( ( A `  t )  x.  t )  <_  sum_ t  e.  NN  (
( A `  t
)  x.  t ) )
135129, 134eqbrtrrd 4475 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  l  e.  NN )  ->  ( ( A `  l )  x.  l
)  <_  sum_ t  e.  NN  ( ( A `
 t )  x.  t ) )
136135adantr 465 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  l  e.  NN )  /\  ( ( S `  A )  <  l  /\  0  <  ( A `
 l ) ) )  ->  ( ( A `  l )  x.  l )  <_  sum_ t  e.  NN  ( ( A `
 t )  x.  t ) )
13752, 113, 108, 122, 136letrd 9750 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  l  e.  NN )  /\  ( ( S `  A )  <  l  /\  0  <  ( A `
 l ) ) )  ->  l  <_  sum_ t  e.  NN  (
( A `  t
)  x.  t ) )
13849, 52, 108, 109, 137ltletrd 9753 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  l  e.  NN )  /\  ( ( S `  A )  <  l  /\  0  <  ( A `
 l ) ) )  ->  ( S `  A )  <  sum_ t  e.  NN  (
( A `  t
)  x.  t ) )
139138ex 434 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  l  e.  NN )  ->  ( ( ( S `
 A )  < 
l  /\  0  <  ( A `  l ) )  ->  ( S `  A )  <  sum_ t  e.  NN  (
( A `  t
)  x.  t ) ) )
140139rexlimdva 2959 . . . . . . . . . . . . . . 15  |-  ( A  e.  ( ( NN0 
^m  NN )  i^i 
R )  ->  ( E. l  e.  NN  ( ( S `  A )  <  l  /\  0  <  ( A `
 l ) )  ->  ( S `  A )  <  sum_ t  e.  NN  (
( A `  t
)  x.  t ) ) )
141140imp 429 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  E. l  e.  NN  (
( S `  A
)  <  l  /\  0  <  ( A `  l ) ) )  ->  ( S `  A )  <  sum_ t  e.  NN  (
( A `  t
)  x.  t ) )
142127cbvsumv 13498 . . . . . . . . . . . . . 14  |-  sum_ t  e.  NN  ( ( A `
 t )  x.  t )  =  sum_ l  e.  NN  (
( A `  l
)  x.  l )
143141, 142syl6breq 4492 . . . . . . . . . . . . 13  |-  ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  E. l  e.  NN  (
( S `  A
)  <  l  /\  0  <  ( A `  l ) ) )  ->  ( S `  A )  <  sum_ l  e.  NN  (
( A `  l
)  x.  l ) )
144 ltne 9693 . . . . . . . . . . . . . 14  |-  ( ( ( S `  A
)  e.  RR  /\  ( S `  A )  <  sum_ l  e.  NN  ( ( A `  l )  x.  l
) )  ->  sum_ l  e.  NN  ( ( A `
 l )  x.  l )  =/=  ( S `  A )
)
145142neeq1i 2752 . . . . . . . . . . . . . 14  |-  ( sum_ t  e.  NN  (
( A `  t
)  x.  t )  =/=  ( S `  A )  <->  sum_ l  e.  NN  ( ( A `
 l )  x.  l )  =/=  ( S `  A )
)
146144, 145sylibr 212 . . . . . . . . . . . . 13  |-  ( ( ( S `  A
)  e.  RR  /\  ( S `  A )  <  sum_ l  e.  NN  ( ( A `  l )  x.  l
) )  ->  sum_ t  e.  NN  ( ( A `
 t )  x.  t )  =/=  ( S `  A )
)
14747, 143, 146syl2anc 661 . . . . . . . . . . . 12  |-  ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  E. l  e.  NN  (
( S `  A
)  <  l  /\  0  <  ( A `  l ) ) )  ->  sum_ t  e.  NN  ( ( A `  t )  x.  t
)  =/=  ( S `
 A ) )
148147ex 434 . . . . . . . . . . 11  |-  ( A  e.  ( ( NN0 
^m  NN )  i^i 
R )  ->  ( E. l  e.  NN  ( ( S `  A )  <  l  /\  0  <  ( A `
 l ) )  ->  sum_ t  e.  NN  ( ( A `  t )  x.  t
)  =/=  ( S `
 A ) ) )
14945, 148syl5bi 217 . . . . . . . . . 10  |-  ( A  e.  ( ( NN0 
^m  NN )  i^i 
R )  ->  ( E. t  e.  NN  ( ( S `  A )  <  t  /\  0  <  ( A `
 t ) )  ->  sum_ t  e.  NN  ( ( A `  t )  x.  t
)  =/=  ( S `
 A ) ) )
150149necon2bd 2682 . . . . . . . . 9  |-  ( A  e.  ( ( NN0 
^m  NN )  i^i 
R )  ->  ( sum_ t  e.  NN  (
( A `  t
)  x.  t )  =  ( S `  A )  ->  -.  E. t  e.  NN  (
( S `  A
)  <  t  /\  0  <  ( A `  t ) ) ) )
15140, 150mpd 15 . . . . . . . 8  |-  ( A  e.  ( ( NN0 
^m  NN )  i^i 
R )  ->  -.  E. t  e.  NN  (
( S `  A
)  <  t  /\  0  <  ( A `  t ) ) )
152 ralnex 2913 . . . . . . . 8  |-  ( A. t  e.  NN  -.  ( ( S `  A )  <  t  /\  0  <  ( A `
 t ) )  <->  -.  E. t  e.  NN  ( ( S `  A )  <  t  /\  0  <  ( A `
 t ) ) )
153151, 152sylibr 212 . . . . . . 7  |-  ( A  e.  ( ( NN0 
^m  NN )  i^i 
R )  ->  A. t  e.  NN  -.  ( ( S `  A )  <  t  /\  0  <  ( A `  t
) ) )
154 imnan 422 . . . . . . . 8  |-  ( ( ( S `  A
)  <  t  ->  -.  0  <  ( A `
 t ) )  <->  -.  ( ( S `  A )  <  t  /\  0  <  ( A `
 t ) ) )
155154ralbii 2898 . . . . . . 7  |-  ( A. t  e.  NN  (
( S `  A
)  <  t  ->  -.  0  <  ( A `
 t ) )  <->  A. t  e.  NN  -.  ( ( S `  A )  <  t  /\  0  <  ( A `
 t ) ) )
156153, 155sylibr 212 . . . . . 6  |-  ( A  e.  ( ( NN0 
^m  NN )  i^i 
R )  ->  A. t  e.  NN  ( ( S `
 A )  < 
t  ->  -.  0  <  ( A `  t
) ) )
157156r19.21bi 2836 . . . . 5  |-  ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  t  e.  NN )  ->  ( ( S `  A )  <  t  ->  -.  0  <  ( A `  t )
) )
158157imp 429 . . . 4  |-  ( ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  t  e.  NN )  /\  ( S `  A
)  <  t )  ->  -.  0  <  ( A `  t )
)
15917, 12, 33, 158syl21anc 1227 . . 3  |-  ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  t  e.  ( NN  \  ( 1 ... ( S `  A )
) ) )  ->  -.  0  <  ( A `
 t ) )
160 nn0re 10816 . . . . . 6  |-  ( ( A `  t )  e.  NN0  ->  ( A `
 t )  e.  RR )
161 0re 9608 . . . . . . 7  |-  0  e.  RR
162161a1i 11 . . . . . 6  |-  ( ( A `  t )  e.  NN0  ->  0  e.  RR )
163160, 162lenltd 9742 . . . . 5  |-  ( ( A `  t )  e.  NN0  ->  ( ( A `  t )  <_  0  <->  -.  0  <  ( A `  t
) ) )
164 nn0le0eq0 10836 . . . . 5  |-  ( ( A `  t )  e.  NN0  ->  ( ( A `  t )  <_  0  <->  ( A `  t )  =  0 ) )
165163, 164bitr3d 255 . . . 4  |-  ( ( A `  t )  e.  NN0  ->  ( -.  0  <  ( A `
 t )  <->  ( A `  t )  =  0 ) )
166165biimpa 484 . . 3  |-  ( ( ( A `  t
)  e.  NN0  /\  -.  0  <  ( A `
 t ) )  ->  ( A `  t )  =  0 )
16716, 159, 166syl2anc 661 . 2  |-  ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  t  e.  ( NN  \  ( 1 ... ( S `  A )
) ) )  -> 
( A `  t
)  =  0 )
1688, 167sylbir 213 1  |-  ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  t  e.  ( ZZ>= `  ( ( S `  A )  +  1 ) ) )  -> 
( A `  t
)  =  0 )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   {cab 2452    =/= wne 2662   A.wral 2817   E.wrex 2818   _Vcvv 3118    \ cdif 3478    i^i cin 3480    C_ wss 3481   {csn 4033   class class class wbr 4453    |-> cmpt 4511   `'ccnv 5004   "cima 5008   -->wf 5590   ` cfv 5594  (class class class)co 6295   supp csupp 6913    ^m cmap 7432   Fincfn 7528   CCcc 9502   RRcr 9503   0cc0 9504   1c1 9505    + caddc 9507    x. cmul 9509    < clt 9640    <_ cle 9641   NNcn 10548   NN0cn0 10807   ZZcz 10876   ZZ>=cuz 11094   ...cfz 11684   sum_csu 13488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-inf2 8070  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581  ax-pre-sup 9582
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-int 4289  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-se 4845  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6696  df-1st 6795  df-2nd 6796  df-supp 6914  df-recs 7054  df-rdg 7088  df-1o 7142  df-oadd 7146  df-er 7323  df-map 7434  df-pm 7435  df-en 7529  df-dom 7530  df-sdom 7531  df-fin 7532  df-sup 7913  df-oi 7947  df-card 8332  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-div 10219  df-nn 10549  df-2 10606  df-3 10607  df-n0 10808  df-z 10877  df-uz 11095  df-rp 11233  df-fz 11685  df-fzo 11805  df-fl 11909  df-seq 12088  df-exp 12147  df-hash 12386  df-cj 12912  df-re 12913  df-im 12914  df-sqrt 13048  df-abs 13049  df-clim 13291  df-rlim 13292  df-sum 13489
This theorem is referenced by:  eulerpartlemsv3  28125  eulerpartlemgc  28126
  Copyright terms: Public domain W3C validator