Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartlemn Structured version   Visualization version   Unicode version

Theorem eulerpartlemn 29287
Description: Lemma for eulerpart 29288. (Contributed by Thierry Arnoux, 30-Aug-2018.)
Hypotheses
Ref Expression
eulerpart.p  |-  P  =  { f  e.  ( NN0  ^m  NN )  |  ( ( `' f " NN )  e.  Fin  /\  sum_ k  e.  NN  (
( f `  k
)  x.  k )  =  N ) }
eulerpart.o  |-  O  =  { g  e.  P  |  A. n  e.  ( `' g " NN )  -.  2  ||  n }
eulerpart.d  |-  D  =  { g  e.  P  |  A. n  e.  NN  ( g `  n
)  <_  1 }
eulerpart.j  |-  J  =  { z  e.  NN  |  -.  2  ||  z }
eulerpart.f  |-  F  =  ( x  e.  J ,  y  e.  NN0  |->  ( ( 2 ^ y )  x.  x
) )
eulerpart.h  |-  H  =  { r  e.  ( ( ~P NN0  i^i  Fin )  ^m  J )  |  ( r supp  (/) )  e. 
Fin }
eulerpart.m  |-  M  =  ( r  e.  H  |->  { <. x ,  y
>.  |  ( x  e.  J  /\  y  e.  ( r `  x
) ) } )
eulerpart.r  |-  R  =  { f  |  ( `' f " NN )  e.  Fin }
eulerpart.t  |-  T  =  { f  e.  ( NN0  ^m  NN )  |  ( `' f
" NN )  C_  J }
eulerpart.g  |-  G  =  ( o  e.  ( T  i^i  R ) 
|->  ( (𝟭 `  NN ) `  ( F " ( M `  (bits  o.  ( o  |`  J ) ) ) ) ) )
eulerpart.s  |-  S  =  ( f  e.  ( ( NN0  ^m  NN )  i^i  R )  |->  sum_ k  e.  NN  (
( f `  k
)  x.  k ) )
Assertion
Ref Expression
eulerpartlemn  |-  ( G  |`  O ) : O -1-1-onto-> D
Distinct variable groups:    f, g,
k, n, o, r, x, y, z    k, F, n, o, x, y   
f, G, k, o   
o, H, r    f, J, k, n, o, r, x, y    k, M, n, o, r, x, y    f, N, g, k, n, o, x   
n, O, r, x, y    P, g, k, n    R, f, k, n, o, r, x, y    T, f, k, n, o, r, x, y
Allowed substitution hints:    D( x, y, z, f, g, k, n, o, r)    P( x, y, z, f, o, r)    R( z, g)    S( x, y, z, f, g, k, n, o, r)    T( z, g)    F( z, f, g, r)    G( x, y, z, g, n, r)    H( x, y, z, f, g, k, n)    J( z, g)    M( z, f, g)    N( y, z, r)    O( z, f, g, k, o)

Proof of Theorem eulerpartlemn
Dummy variables  d 
q are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 464 . . . . . . . . . . . . 13  |-  ( ( o  =  q  /\  k  e.  NN )  ->  o  =  q )
21fveq1d 5881 . . . . . . . . . . . 12  |-  ( ( o  =  q  /\  k  e.  NN )  ->  ( o `  k
)  =  ( q `
 k ) )
32oveq1d 6323 . . . . . . . . . . 11  |-  ( ( o  =  q  /\  k  e.  NN )  ->  ( ( o `  k )  x.  k
)  =  ( ( q `  k )  x.  k ) )
43sumeq2dv 13846 . . . . . . . . . 10  |-  ( o  =  q  ->  sum_ k  e.  NN  ( ( o `
 k )  x.  k )  =  sum_ k  e.  NN  (
( q `  k
)  x.  k ) )
54eqeq1d 2473 . . . . . . . . 9  |-  ( o  =  q  ->  ( sum_ k  e.  NN  (
( o `  k
)  x.  k )  =  N  <->  sum_ k  e.  NN  ( ( q `
 k )  x.  k )  =  N ) )
65cbvrabv 3030 . . . . . . . 8  |-  { o  e.  ( T  i^i  R )  |  sum_ k  e.  NN  ( ( o `
 k )  x.  k )  =  N }  =  { q  e.  ( T  i^i  R )  |  sum_ k  e.  NN  ( ( q `
 k )  x.  k )  =  N }
76a1i 11 . . . . . . 7  |-  ( o  =  q  ->  { o  e.  ( T  i^i  R )  |  sum_ k  e.  NN  ( ( o `
 k )  x.  k )  =  N }  =  { q  e.  ( T  i^i  R )  |  sum_ k  e.  NN  ( ( q `
 k )  x.  k )  =  N } )
87reseq2d 5111 . . . . . 6  |-  ( o  =  q  ->  ( G  |`  { o  e.  ( T  i^i  R
)  |  sum_ k  e.  NN  ( ( o `
 k )  x.  k )  =  N } )  =  ( G  |`  { q  e.  ( T  i^i  R
)  |  sum_ k  e.  NN  ( ( q `
 k )  x.  k )  =  N } ) )
9 eqidd 2472 . . . . . 6  |-  ( o  =  q  ->  { d  e.  ( ( { 0 ,  1 }  ^m  NN )  i^i 
R )  |  sum_ k  e.  NN  (
( d `  k
)  x.  k )  =  N }  =  { d  e.  ( ( { 0 ,  1 }  ^m  NN )  i^i  R )  | 
sum_ k  e.  NN  ( ( d `  k )  x.  k
)  =  N }
)
108, 7, 9f1oeq123d 5824 . . . . 5  |-  ( o  =  q  ->  (
( G  |`  { o  e.  ( T  i^i  R )  |  sum_ k  e.  NN  ( ( o `
 k )  x.  k )  =  N } ) : {
o  e.  ( T  i^i  R )  | 
sum_ k  e.  NN  ( ( o `  k )  x.  k
)  =  N } -1-1-onto-> {
d  e.  ( ( { 0 ,  1 }  ^m  NN )  i^i  R )  | 
sum_ k  e.  NN  ( ( d `  k )  x.  k
)  =  N }  <->  ( G  |`  { q  e.  ( T  i^i  R
)  |  sum_ k  e.  NN  ( ( q `
 k )  x.  k )  =  N } ) : {
q  e.  ( T  i^i  R )  | 
sum_ k  e.  NN  ( ( q `  k )  x.  k
)  =  N } -1-1-onto-> {
d  e.  ( ( { 0 ,  1 }  ^m  NN )  i^i  R )  | 
sum_ k  e.  NN  ( ( d `  k )  x.  k
)  =  N }
) )
1110imbi2d 323 . . . 4  |-  ( o  =  q  ->  (
( T.  ->  ( G  |`  { o  e.  ( T  i^i  R
)  |  sum_ k  e.  NN  ( ( o `
 k )  x.  k )  =  N } ) : {
o  e.  ( T  i^i  R )  | 
sum_ k  e.  NN  ( ( o `  k )  x.  k
)  =  N } -1-1-onto-> {
d  e.  ( ( { 0 ,  1 }  ^m  NN )  i^i  R )  | 
sum_ k  e.  NN  ( ( d `  k )  x.  k
)  =  N }
)  <->  ( T.  ->  ( G  |`  { q  e.  ( T  i^i  R
)  |  sum_ k  e.  NN  ( ( q `
 k )  x.  k )  =  N } ) : {
q  e.  ( T  i^i  R )  | 
sum_ k  e.  NN  ( ( q `  k )  x.  k
)  =  N } -1-1-onto-> {
d  e.  ( ( { 0 ,  1 }  ^m  NN )  i^i  R )  | 
sum_ k  e.  NN  ( ( d `  k )  x.  k
)  =  N }
) ) )
12 eulerpart.g . . . . 5  |-  G  =  ( o  e.  ( T  i^i  R ) 
|->  ( (𝟭 `  NN ) `  ( F " ( M `  (bits  o.  ( o  |`  J ) ) ) ) ) )
13 eulerpart.p . . . . . . 7  |-  P  =  { f  e.  ( NN0  ^m  NN )  |  ( ( `' f " NN )  e.  Fin  /\  sum_ k  e.  NN  (
( f `  k
)  x.  k )  =  N ) }
14 eulerpart.o . . . . . . 7  |-  O  =  { g  e.  P  |  A. n  e.  ( `' g " NN )  -.  2  ||  n }
15 eulerpart.d . . . . . . 7  |-  D  =  { g  e.  P  |  A. n  e.  NN  ( g `  n
)  <_  1 }
16 eulerpart.j . . . . . . 7  |-  J  =  { z  e.  NN  |  -.  2  ||  z }
17 eulerpart.f . . . . . . 7  |-  F  =  ( x  e.  J ,  y  e.  NN0  |->  ( ( 2 ^ y )  x.  x
) )
18 eulerpart.h . . . . . . 7  |-  H  =  { r  e.  ( ( ~P NN0  i^i  Fin )  ^m  J )  |  ( r supp  (/) )  e. 
Fin }
19 eulerpart.m . . . . . . 7  |-  M  =  ( r  e.  H  |->  { <. x ,  y
>.  |  ( x  e.  J  /\  y  e.  ( r `  x
) ) } )
20 eulerpart.r . . . . . . 7  |-  R  =  { f  |  ( `' f " NN )  e.  Fin }
21 eulerpart.t . . . . . . 7  |-  T  =  { f  e.  ( NN0  ^m  NN )  |  ( `' f
" NN )  C_  J }
2213, 14, 15, 16, 17, 18, 19, 20, 21, 12eulerpartgbij 29278 . . . . . 6  |-  G :
( T  i^i  R
)
-1-1-onto-> ( ( { 0 ,  1 }  ^m  NN )  i^i  R )
2322a1i 11 . . . . 5  |-  ( T. 
->  G : ( T  i^i  R ) -1-1-onto-> ( ( { 0 ,  1 }  ^m  NN )  i^i  R ) )
24 fveq2 5879 . . . . . . . . . . . . . 14  |-  ( q  =  o  ->  ( G `  q )  =  ( G `  o ) )
25 reseq1 5105 . . . . . . . . . . . . . . . . . 18  |-  ( q  =  o  ->  (
q  |`  J )  =  ( o  |`  J ) )
2625coeq2d 5002 . . . . . . . . . . . . . . . . 17  |-  ( q  =  o  ->  (bits  o.  ( q  |`  J ) )  =  (bits  o.  ( o  |`  J ) ) )
2726fveq2d 5883 . . . . . . . . . . . . . . . 16  |-  ( q  =  o  ->  ( M `  (bits  o.  (
q  |`  J ) ) )  =  ( M `
 (bits  o.  (
o  |`  J ) ) ) )
2827imaeq2d 5174 . . . . . . . . . . . . . . 15  |-  ( q  =  o  ->  ( F " ( M `  (bits  o.  ( q  |`  J ) ) ) )  =  ( F
" ( M `  (bits  o.  ( o  |`  J ) ) ) ) )
2928fveq2d 5883 . . . . . . . . . . . . . 14  |-  ( q  =  o  ->  (
(𝟭 `  NN ) `  ( F " ( M `
 (bits  o.  (
q  |`  J ) ) ) ) )  =  ( (𝟭 `  NN ) `  ( F " ( M `  (bits  o.  ( o  |`  J ) ) ) ) ) )
3024, 29eqeq12d 2486 . . . . . . . . . . . . 13  |-  ( q  =  o  ->  (
( G `  q
)  =  ( (𝟭 `  NN ) `  ( F " ( M `  (bits  o.  ( q  |`  J ) ) ) ) )  <->  ( G `  o )  =  ( (𝟭 `  NN ) `  ( F " ( M `  (bits  o.  (
o  |`  J ) ) ) ) ) ) )
3113, 14, 15, 16, 17, 18, 19, 20, 21, 12eulerpartlemgv 29279 . . . . . . . . . . . . 13  |-  ( q  e.  ( T  i^i  R )  ->  ( G `  q )  =  ( (𝟭 `  NN ) `  ( F " ( M `  (bits  o.  (
q  |`  J ) ) ) ) ) )
3230, 31vtoclga 3099 . . . . . . . . . . . 12  |-  ( o  e.  ( T  i^i  R )  ->  ( G `  o )  =  ( (𝟭 `  NN ) `  ( F " ( M `  (bits  o.  (
o  |`  J ) ) ) ) ) )
33323ad2ant2 1052 . . . . . . . . . . 11  |-  ( ( T.  /\  o  e.  ( T  i^i  R
)  /\  d  =  ( (𝟭 `  NN ) `  ( F " ( M `  (bits  o.  (
o  |`  J ) ) ) ) ) )  ->  ( G `  o )  =  ( (𝟭 `  NN ) `  ( F " ( M `  (bits  o.  (
o  |`  J ) ) ) ) ) )
34 simp3 1032 . . . . . . . . . . 11  |-  ( ( T.  /\  o  e.  ( T  i^i  R
)  /\  d  =  ( (𝟭 `  NN ) `  ( F " ( M `  (bits  o.  (
o  |`  J ) ) ) ) ) )  ->  d  =  ( (𝟭 `  NN ) `  ( F " ( M `  (bits  o.  (
o  |`  J ) ) ) ) ) )
3533, 34eqtr4d 2508 . . . . . . . . . 10  |-  ( ( T.  /\  o  e.  ( T  i^i  R
)  /\  d  =  ( (𝟭 `  NN ) `  ( F " ( M `  (bits  o.  (
o  |`  J ) ) ) ) ) )  ->  ( G `  o )  =  d )
3635fveq1d 5881 . . . . . . . . 9  |-  ( ( T.  /\  o  e.  ( T  i^i  R
)  /\  d  =  ( (𝟭 `  NN ) `  ( F " ( M `  (bits  o.  (
o  |`  J ) ) ) ) ) )  ->  ( ( G `
 o ) `  k )  =  ( d `  k ) )
3736oveq1d 6323 . . . . . . . 8  |-  ( ( T.  /\  o  e.  ( T  i^i  R
)  /\  d  =  ( (𝟭 `  NN ) `  ( F " ( M `  (bits  o.  (
o  |`  J ) ) ) ) ) )  ->  ( ( ( G `  o ) `
 k )  x.  k )  =  ( ( d `  k
)  x.  k ) )
3837sumeq2sdv 13847 . . . . . . 7  |-  ( ( T.  /\  o  e.  ( T  i^i  R
)  /\  d  =  ( (𝟭 `  NN ) `  ( F " ( M `  (bits  o.  (
o  |`  J ) ) ) ) ) )  ->  sum_ k  e.  NN  ( ( ( G `
 o ) `  k )  x.  k
)  =  sum_ k  e.  NN  ( ( d `
 k )  x.  k ) )
3924fveq2d 5883 . . . . . . . . . . 11  |-  ( q  =  o  ->  ( S `  ( G `  q ) )  =  ( S `  ( G `  o )
) )
40 fveq2 5879 . . . . . . . . . . 11  |-  ( q  =  o  ->  ( S `  q )  =  ( S `  o ) )
4139, 40eqeq12d 2486 . . . . . . . . . 10  |-  ( q  =  o  ->  (
( S `  ( G `  q )
)  =  ( S `
 q )  <->  ( S `  ( G `  o
) )  =  ( S `  o ) ) )
42 eulerpart.s . . . . . . . . . . 11  |-  S  =  ( f  e.  ( ( NN0  ^m  NN )  i^i  R )  |->  sum_ k  e.  NN  (
( f `  k
)  x.  k ) )
4313, 14, 15, 16, 17, 18, 19, 20, 21, 12, 42eulerpartlemgs2 29286 . . . . . . . . . 10  |-  ( q  e.  ( T  i^i  R )  ->  ( S `  ( G `  q
) )  =  ( S `  q ) )
4441, 43vtoclga 3099 . . . . . . . . 9  |-  ( o  e.  ( T  i^i  R )  ->  ( S `  ( G `  o
) )  =  ( S `  o ) )
45 nn0ex 10899 . . . . . . . . . . . . 13  |-  NN0  e.  _V
46 0nn0 10908 . . . . . . . . . . . . . 14  |-  0  e.  NN0
47 1nn0 10909 . . . . . . . . . . . . . 14  |-  1  e.  NN0
48 prssi 4119 . . . . . . . . . . . . . 14  |-  ( ( 0  e.  NN0  /\  1  e.  NN0 )  ->  { 0 ,  1 }  C_  NN0 )
4946, 47, 48mp2an 686 . . . . . . . . . . . . 13  |-  { 0 ,  1 }  C_  NN0
50 mapss 7532 . . . . . . . . . . . . 13  |-  ( ( NN0  e.  _V  /\  { 0 ,  1 } 
C_  NN0 )  ->  ( { 0 ,  1 }  ^m  NN ) 
C_  ( NN0  ^m  NN ) )
5145, 49, 50mp2an 686 . . . . . . . . . . . 12  |-  ( { 0 ,  1 }  ^m  NN )  C_  ( NN0  ^m  NN )
52 ssrin 3648 . . . . . . . . . . . 12  |-  ( ( { 0 ,  1 }  ^m  NN ) 
C_  ( NN0  ^m  NN )  ->  ( ( { 0 ,  1 }  ^m  NN )  i^i  R )  C_  ( ( NN0  ^m  NN )  i^i  R ) )
5351, 52ax-mp 5 . . . . . . . . . . 11  |-  ( ( { 0 ,  1 }  ^m  NN )  i^i  R )  C_  ( ( NN0  ^m  NN )  i^i  R )
54 f1of 5828 . . . . . . . . . . . . 13  |-  ( G : ( T  i^i  R ) -1-1-onto-> ( ( { 0 ,  1 }  ^m  NN )  i^i  R )  ->  G : ( T  i^i  R ) --> ( ( { 0 ,  1 }  ^m  NN )  i^i  R ) )
5522, 54ax-mp 5 . . . . . . . . . . . 12  |-  G :
( T  i^i  R
) --> ( ( { 0 ,  1 }  ^m  NN )  i^i 
R )
5655ffvelrni 6036 . . . . . . . . . . 11  |-  ( o  e.  ( T  i^i  R )  ->  ( G `  o )  e.  ( ( { 0 ,  1 }  ^m  NN )  i^i  R ) )
5753, 56sseldi 3416 . . . . . . . . . 10  |-  ( o  e.  ( T  i^i  R )  ->  ( G `  o )  e.  ( ( NN0  ^m  NN )  i^i  R ) )
5820, 42eulerpartlemsv1 29262 . . . . . . . . . 10  |-  ( ( G `  o )  e.  ( ( NN0 
^m  NN )  i^i 
R )  ->  ( S `  ( G `  o ) )  = 
sum_ k  e.  NN  ( ( ( G `
 o ) `  k )  x.  k
) )
5957, 58syl 17 . . . . . . . . 9  |-  ( o  e.  ( T  i^i  R )  ->  ( S `  ( G `  o
) )  =  sum_ k  e.  NN  (
( ( G `  o ) `  k
)  x.  k ) )
6013, 14, 15, 16, 17, 18, 19, 20, 21eulerpartlemt0 29275 . . . . . . . . . . . 12  |-  ( o  e.  ( T  i^i  R )  <->  ( o  e.  ( NN0  ^m  NN )  /\  ( `' o
" NN )  e. 
Fin  /\  ( `' o " NN )  C_  J ) )
6160simp1bi 1045 . . . . . . . . . . 11  |-  ( o  e.  ( T  i^i  R )  ->  o  e.  ( NN0  ^m  NN ) )
62 inss2 3644 . . . . . . . . . . . 12  |-  ( T  i^i  R )  C_  R
6362sseli 3414 . . . . . . . . . . 11  |-  ( o  e.  ( T  i^i  R )  ->  o  e.  R )
6461, 63elind 3609 . . . . . . . . . 10  |-  ( o  e.  ( T  i^i  R )  ->  o  e.  ( ( NN0  ^m  NN )  i^i  R ) )
6520, 42eulerpartlemsv1 29262 . . . . . . . . . 10  |-  ( o  e.  ( ( NN0 
^m  NN )  i^i 
R )  ->  ( S `  o )  =  sum_ k  e.  NN  ( ( o `  k )  x.  k
) )
6664, 65syl 17 . . . . . . . . 9  |-  ( o  e.  ( T  i^i  R )  ->  ( S `  o )  =  sum_ k  e.  NN  (
( o `  k
)  x.  k ) )
6744, 59, 663eqtr3d 2513 . . . . . . . 8  |-  ( o  e.  ( T  i^i  R )  ->  sum_ k  e.  NN  ( ( ( G `  o ) `
 k )  x.  k )  =  sum_ k  e.  NN  (
( o `  k
)  x.  k ) )
68673ad2ant2 1052 . . . . . . 7  |-  ( ( T.  /\  o  e.  ( T  i^i  R
)  /\  d  =  ( (𝟭 `  NN ) `  ( F " ( M `  (bits  o.  (
o  |`  J ) ) ) ) ) )  ->  sum_ k  e.  NN  ( ( ( G `
 o ) `  k )  x.  k
)  =  sum_ k  e.  NN  ( ( o `
 k )  x.  k ) )
6938, 68eqtr3d 2507 . . . . . 6  |-  ( ( T.  /\  o  e.  ( T  i^i  R
)  /\  d  =  ( (𝟭 `  NN ) `  ( F " ( M `  (bits  o.  (
o  |`  J ) ) ) ) ) )  ->  sum_ k  e.  NN  ( ( d `  k )  x.  k
)  =  sum_ k  e.  NN  ( ( o `
 k )  x.  k ) )
7069eqeq1d 2473 . . . . 5  |-  ( ( T.  /\  o  e.  ( T  i^i  R
)  /\  d  =  ( (𝟭 `  NN ) `  ( F " ( M `  (bits  o.  (
o  |`  J ) ) ) ) ) )  ->  ( sum_ k  e.  NN  ( ( d `
 k )  x.  k )  =  N  <->  sum_ k  e.  NN  (
( o `  k
)  x.  k )  =  N ) )
7112, 23, 70f1oresrab 6071 . . . 4  |-  ( T. 
->  ( G  |`  { o  e.  ( T  i^i  R )  |  sum_ k  e.  NN  ( ( o `
 k )  x.  k )  =  N } ) : {
o  e.  ( T  i^i  R )  | 
sum_ k  e.  NN  ( ( o `  k )  x.  k
)  =  N } -1-1-onto-> {
d  e.  ( ( { 0 ,  1 }  ^m  NN )  i^i  R )  | 
sum_ k  e.  NN  ( ( d `  k )  x.  k
)  =  N }
)
7211, 71chvarv 2120 . . 3  |-  ( T. 
->  ( G  |`  { q  e.  ( T  i^i  R )  |  sum_ k  e.  NN  ( ( q `
 k )  x.  k )  =  N } ) : {
q  e.  ( T  i^i  R )  | 
sum_ k  e.  NN  ( ( q `  k )  x.  k
)  =  N } -1-1-onto-> {
d  e.  ( ( { 0 ,  1 }  ^m  NN )  i^i  R )  | 
sum_ k  e.  NN  ( ( d `  k )  x.  k
)  =  N }
)
73 cnveq 5013 . . . . . . . . . 10  |-  ( g  =  q  ->  `' g  =  `' q
)
7473imaeq1d 5173 . . . . . . . . 9  |-  ( g  =  q  ->  ( `' g " NN )  =  ( `' q " NN ) )
7574raleqdv 2979 . . . . . . . 8  |-  ( g  =  q  ->  ( A. n  e.  ( `' g " NN )  -.  2  ||  n  <->  A. n  e.  ( `' q " NN )  -.  2  ||  n
) )
7675cbvrabv 3030 . . . . . . 7  |-  { g  e.  P  |  A. n  e.  ( `' g " NN )  -.  2  ||  n }  =  { q  e.  P  |  A. n  e.  ( `' q " NN )  -.  2  ||  n }
77 nfrab1 2957 . . . . . . . 8  |-  F/_ q { q  e.  P  |  A. n  e.  ( `' q " NN )  -.  2  ||  n }
78 nfrab1 2957 . . . . . . . 8  |-  F/_ q { q  e.  ( T  i^i  R )  |  sum_ k  e.  NN  ( ( q `  k )  x.  k
)  =  N }
79 df-3an 1009 . . . . . . . . . . . 12  |-  ( ( q : NN --> NN0  /\  ( `' q " NN )  e.  Fin  /\  sum_ k  e.  NN  (
( q `  k
)  x.  k )  =  N )  <->  ( (
q : NN --> NN0  /\  ( `' q " NN )  e.  Fin )  /\  sum_ k  e.  NN  ( ( q `  k )  x.  k
)  =  N ) )
8079anbi1i 709 . . . . . . . . . . 11  |-  ( ( ( q : NN --> NN0  /\  ( `' q
" NN )  e. 
Fin  /\  sum_ k  e.  NN  ( ( q `
 k )  x.  k )  =  N )  /\  A. n  e.  ( `' q " NN )  -.  2  ||  n )  <->  ( (
( q : NN --> NN0  /\  ( `' q
" NN )  e. 
Fin )  /\  sum_ k  e.  NN  (
( q `  k
)  x.  k )  =  N )  /\  A. n  e.  ( `' q " NN )  -.  2  ||  n
) )
8113eulerpartleme 29269 . . . . . . . . . . . 12  |-  ( q  e.  P  <->  ( q : NN --> NN0  /\  ( `' q " NN )  e.  Fin  /\  sum_ k  e.  NN  (
( q `  k
)  x.  k )  =  N ) )
8281anbi1i 709 . . . . . . . . . . 11  |-  ( ( q  e.  P  /\  A. n  e.  ( `' q " NN )  -.  2  ||  n
)  <->  ( ( q : NN --> NN0  /\  ( `' q " NN )  e.  Fin  /\  sum_ k  e.  NN  (
( q `  k
)  x.  k )  =  N )  /\  A. n  e.  ( `' q " NN )  -.  2  ||  n
) )
83 an32 815 . . . . . . . . . . 11  |-  ( ( ( ( q : NN --> NN0  /\  ( `' q " NN )  e.  Fin )  /\  A. n  e.  ( `' q " NN )  -.  2  ||  n
)  /\  sum_ k  e.  NN  ( ( q `
 k )  x.  k )  =  N )  <->  ( ( ( q : NN --> NN0  /\  ( `' q " NN )  e.  Fin )  /\  sum_ k  e.  NN  ( ( q `  k )  x.  k
)  =  N )  /\  A. n  e.  ( `' q " NN )  -.  2  ||  n ) )
8480, 82, 833bitr4i 285 . . . . . . . . . 10  |-  ( ( q  e.  P  /\  A. n  e.  ( `' q " NN )  -.  2  ||  n
)  <->  ( ( ( q : NN --> NN0  /\  ( `' q " NN )  e.  Fin )  /\  A. n  e.  ( `' q " NN )  -.  2  ||  n
)  /\  sum_ k  e.  NN  ( ( q `
 k )  x.  k )  =  N ) )
8513, 14, 15, 16, 17, 18, 19, 20, 21eulerpartlemt0 29275 . . . . . . . . . . . . 13  |-  ( q  e.  ( T  i^i  R )  <->  ( q  e.  ( NN0  ^m  NN )  /\  ( `' q
" NN )  e. 
Fin  /\  ( `' q " NN )  C_  J ) )
86 nnex 10637 . . . . . . . . . . . . . . 15  |-  NN  e.  _V
8745, 86elmap 7518 . . . . . . . . . . . . . 14  |-  ( q  e.  ( NN0  ^m  NN )  <->  q : NN --> NN0 )
88873anbi1i 1221 . . . . . . . . . . . . 13  |-  ( ( q  e.  ( NN0 
^m  NN )  /\  ( `' q " NN )  e.  Fin  /\  ( `' q " NN )  C_  J )  <->  ( q : NN --> NN0  /\  ( `' q " NN )  e.  Fin  /\  ( `' q " NN )  C_  J ) )
8985, 88bitri 257 . . . . . . . . . . . 12  |-  ( q  e.  ( T  i^i  R )  <->  ( q : NN --> NN0  /\  ( `' q " NN )  e.  Fin  /\  ( `' q " NN )  C_  J ) )
90 df-3an 1009 . . . . . . . . . . . 12  |-  ( ( q : NN --> NN0  /\  ( `' q " NN )  e.  Fin  /\  ( `' q " NN )  C_  J )  <->  ( (
q : NN --> NN0  /\  ( `' q " NN )  e.  Fin )  /\  ( `' q " NN )  C_  J ) )
91 cnvimass 5194 . . . . . . . . . . . . . . . . . 18  |-  ( `' q " NN ) 
C_  dom  q
92 fdm 5745 . . . . . . . . . . . . . . . . . 18  |-  ( q : NN --> NN0  ->  dom  q  =  NN )
9391, 92syl5sseq 3466 . . . . . . . . . . . . . . . . 17  |-  ( q : NN --> NN0  ->  ( `' q " NN )  C_  NN )
94 dfss3 3408 . . . . . . . . . . . . . . . . 17  |-  ( ( `' q " NN )  C_  NN  <->  A. n  e.  ( `' q " NN ) n  e.  NN )
9593, 94sylib 201 . . . . . . . . . . . . . . . 16  |-  ( q : NN --> NN0  ->  A. n  e.  ( `' q " NN ) n  e.  NN )
9695biantrurd 516 . . . . . . . . . . . . . . 15  |-  ( q : NN --> NN0  ->  ( A. n  e.  ( `' q " NN )  -.  2  ||  n  <->  ( A. n  e.  ( `' q " NN ) n  e.  NN  /\ 
A. n  e.  ( `' q " NN )  -.  2  ||  n
) ) )
97 dfss3 3408 . . . . . . . . . . . . . . . 16  |-  ( ( `' q " NN )  C_  J  <->  A. n  e.  ( `' q " NN ) n  e.  J
)
98 breq2 4399 . . . . . . . . . . . . . . . . . . 19  |-  ( z  =  n  ->  (
2  ||  z  <->  2  ||  n ) )
9998notbid 301 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  n  ->  ( -.  2  ||  z  <->  -.  2  ||  n ) )
10099, 16elrab2 3186 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  J  <->  ( n  e.  NN  /\  -.  2  ||  n ) )
101100ralbii 2823 . . . . . . . . . . . . . . . 16  |-  ( A. n  e.  ( `' q " NN ) n  e.  J  <->  A. n  e.  ( `' q " NN ) ( n  e.  NN  /\  -.  2  ||  n ) )
102 r19.26 2904 . . . . . . . . . . . . . . . 16  |-  ( A. n  e.  ( `' q " NN ) ( n  e.  NN  /\  -.  2  ||  n )  <-> 
( A. n  e.  ( `' q " NN ) n  e.  NN  /\ 
A. n  e.  ( `' q " NN )  -.  2  ||  n
) )
10397, 101, 1023bitri 279 . . . . . . . . . . . . . . 15  |-  ( ( `' q " NN )  C_  J  <->  ( A. n  e.  ( `' q " NN ) n  e.  NN  /\  A. n  e.  ( `' q " NN )  -.  2  ||  n ) )
10496, 103syl6rbbr 272 . . . . . . . . . . . . . 14  |-  ( q : NN --> NN0  ->  ( ( `' q " NN )  C_  J  <->  A. n  e.  ( `' q " NN )  -.  2  ||  n ) )
105104adantr 472 . . . . . . . . . . . . 13  |-  ( ( q : NN --> NN0  /\  ( `' q " NN )  e.  Fin )  ->  ( ( `' q
" NN )  C_  J 
<-> 
A. n  e.  ( `' q " NN )  -.  2  ||  n
) )
106105pm5.32i 649 . . . . . . . . . . . 12  |-  ( ( ( q : NN --> NN0  /\  ( `' q
" NN )  e. 
Fin )  /\  ( `' q " NN )  C_  J )  <->  ( (
q : NN --> NN0  /\  ( `' q " NN )  e.  Fin )  /\  A. n  e.  ( `' q " NN )  -.  2  ||  n
) )
10789, 90, 1063bitri 279 . . . . . . . . . . 11  |-  ( q  e.  ( T  i^i  R )  <->  ( ( q : NN --> NN0  /\  ( `' q " NN )  e.  Fin )  /\  A. n  e.  ( `' q " NN )  -.  2  ||  n
) )
108107anbi1i 709 . . . . . . . . . 10  |-  ( ( q  e.  ( T  i^i  R )  /\  sum_ k  e.  NN  (
( q `  k
)  x.  k )  =  N )  <->  ( (
( q : NN --> NN0  /\  ( `' q
" NN )  e. 
Fin )  /\  A. n  e.  ( `' q " NN )  -.  2  ||  n )  /\  sum_ k  e.  NN  ( ( q `  k )  x.  k
)  =  N ) )
10984, 108bitr4i 260 . . . . . . . . 9  |-  ( ( q  e.  P  /\  A. n  e.  ( `' q " NN )  -.  2  ||  n
)  <->  ( q  e.  ( T  i^i  R
)  /\  sum_ k  e.  NN  ( ( q `
 k )  x.  k )  =  N ) )
110 rabid 2953 . . . . . . . . 9  |-  ( q  e.  { q  e.  P  |  A. n  e.  ( `' q " NN )  -.  2  ||  n }  <->  ( q  e.  P  /\  A. n  e.  ( `' q " NN )  -.  2  ||  n ) )
111 rabid 2953 . . . . . . . . 9  |-  ( q  e.  { q  e.  ( T  i^i  R
)  |  sum_ k  e.  NN  ( ( q `
 k )  x.  k )  =  N }  <->  ( q  e.  ( T  i^i  R
)  /\  sum_ k  e.  NN  ( ( q `
 k )  x.  k )  =  N ) )
112109, 110, 1113bitr4i 285 . . . . . . . 8  |-  ( q  e.  { q  e.  P  |  A. n  e.  ( `' q " NN )  -.  2  ||  n }  <->  q  e.  { q  e.  ( T  i^i  R )  | 
sum_ k  e.  NN  ( ( q `  k )  x.  k
)  =  N }
)
11377, 78, 112eqri 28226 . . . . . . 7  |-  { q  e.  P  |  A. n  e.  ( `' q " NN )  -.  2  ||  n }  =  { q  e.  ( T  i^i  R )  |  sum_ k  e.  NN  ( ( q `  k )  x.  k
)  =  N }
11414, 76, 1133eqtri 2497 . . . . . 6  |-  O  =  { q  e.  ( T  i^i  R )  |  sum_ k  e.  NN  ( ( q `  k )  x.  k
)  =  N }
115114reseq2i 5108 . . . . 5  |-  ( G  |`  O )  =  ( G  |`  { q  e.  ( T  i^i  R
)  |  sum_ k  e.  NN  ( ( q `
 k )  x.  k )  =  N } )
116115a1i 11 . . . 4  |-  ( T. 
->  ( G  |`  O )  =  ( G  |`  { q  e.  ( T  i^i  R )  |  sum_ k  e.  NN  ( ( q `  k )  x.  k
)  =  N }
) )
117114a1i 11 . . . 4  |-  ( T. 
->  O  =  {
q  e.  ( T  i^i  R )  | 
sum_ k  e.  NN  ( ( q `  k )  x.  k
)  =  N }
)
118 nfcv 2612 . . . . . 6  |-  F/_ d D
119 nfrab1 2957 . . . . . 6  |-  F/_ d { d  e.  ( ( { 0 ,  1 }  ^m  NN )  i^i  R )  | 
sum_ k  e.  NN  ( ( d `  k )  x.  k
)  =  N }
120 fnima 5704 . . . . . . . . . . . . . . . . 17  |-  ( d  Fn  NN  ->  (
d " NN )  =  ran  d )
121120sseq1d 3445 . . . . . . . . . . . . . . . 16  |-  ( d  Fn  NN  ->  (
( d " NN )  C_  { 0 ,  1 }  <->  ran  d  C_  { 0 ,  1 } ) )
122121anbi2d 718 . . . . . . . . . . . . . . 15  |-  ( d  Fn  NN  ->  (
( ran  d  C_  NN0 
/\  ( d " NN )  C_  { 0 ,  1 } )  <-> 
( ran  d  C_  NN0 
/\  ran  d  C_  { 0 ,  1 } ) ) )
123 sstr 3426 . . . . . . . . . . . . . . . . 17  |-  ( ( ran  d  C_  { 0 ,  1 }  /\  { 0 ,  1 } 
C_  NN0 )  ->  ran  d  C_  NN0 )
12449, 123mpan2 685 . . . . . . . . . . . . . . . 16  |-  ( ran  d  C_  { 0 ,  1 }  ->  ran  d  C_  NN0 )
125124pm4.71ri 645 . . . . . . . . . . . . . . 15  |-  ( ran  d  C_  { 0 ,  1 }  <->  ( ran  d  C_  NN0  /\  ran  d  C_ 
{ 0 ,  1 } ) )
126122, 125syl6bbr 271 . . . . . . . . . . . . . 14  |-  ( d  Fn  NN  ->  (
( ran  d  C_  NN0 
/\  ( d " NN )  C_  { 0 ,  1 } )  <->  ran  d  C_  { 0 ,  1 } ) )
127126pm5.32i 649 . . . . . . . . . . . . 13  |-  ( ( d  Fn  NN  /\  ( ran  d  C_  NN0  /\  ( d " NN )  C_  { 0 ,  1 } ) )  <-> 
( d  Fn  NN  /\ 
ran  d  C_  { 0 ,  1 } ) )
128 anass 661 . . . . . . . . . . . . 13  |-  ( ( ( d  Fn  NN  /\ 
ran  d  C_  NN0 )  /\  ( d " NN )  C_  { 0 ,  1 } )  <->  ( d  Fn  NN  /\  ( ran  d  C_  NN0  /\  (
d " NN ) 
C_  { 0 ,  1 } ) ) )
129 df-f 5593 . . . . . . . . . . . . 13  |-  ( d : NN --> { 0 ,  1 }  <->  ( d  Fn  NN  /\  ran  d  C_ 
{ 0 ,  1 } ) )
130127, 128, 1293bitr4ri 286 . . . . . . . . . . . 12  |-  ( d : NN --> { 0 ,  1 }  <->  ( (
d  Fn  NN  /\  ran  d  C_  NN0 )  /\  ( d " NN )  C_  { 0 ,  1 } ) )
131 prex 4642 . . . . . . . . . . . . 13  |-  { 0 ,  1 }  e.  _V
132131, 86elmap 7518 . . . . . . . . . . . 12  |-  ( d  e.  ( { 0 ,  1 }  ^m  NN )  <->  d : NN --> { 0 ,  1 } )
133 df-f 5593 . . . . . . . . . . . . 13  |-  ( d : NN --> NN0  <->  ( d  Fn  NN  /\  ran  d  C_ 
NN0 ) )
134133anbi1i 709 . . . . . . . . . . . 12  |-  ( ( d : NN --> NN0  /\  ( d " NN )  C_  { 0 ,  1 } )  <->  ( (
d  Fn  NN  /\  ran  d  C_  NN0 )  /\  ( d " NN )  C_  { 0 ,  1 } ) )
135130, 132, 1343bitr4i 285 . . . . . . . . . . 11  |-  ( d  e.  ( { 0 ,  1 }  ^m  NN )  <->  ( d : NN --> NN0  /\  (
d " NN ) 
C_  { 0 ,  1 } ) )
136 vex 3034 . . . . . . . . . . . 12  |-  d  e. 
_V
137 cnveq 5013 . . . . . . . . . . . . . 14  |-  ( f  =  d  ->  `' f  =  `' d
)
138137imaeq1d 5173 . . . . . . . . . . . . 13  |-  ( f  =  d  ->  ( `' f " NN )  =  ( `' d " NN ) )
139138eleq1d 2533 . . . . . . . . . . . 12  |-  ( f  =  d  ->  (
( `' f " NN )  e.  Fin  <->  ( `' d " NN )  e.  Fin )
)
140136, 139, 20elab2 3176 . . . . . . . . . . 11  |-  ( d  e.  R  <->  ( `' d " NN )  e. 
Fin )
141135, 140anbi12i 711 . . . . . . . . . 10  |-  ( ( d  e.  ( { 0 ,  1 }  ^m  NN )  /\  d  e.  R )  <->  ( ( d : NN --> NN0  /\  ( d " NN )  C_  { 0 ,  1 } )  /\  ( `' d
" NN )  e. 
Fin ) )
142 elin 3608 . . . . . . . . . 10  |-  ( d  e.  ( ( { 0 ,  1 }  ^m  NN )  i^i 
R )  <->  ( d  e.  ( { 0 ,  1 }  ^m  NN )  /\  d  e.  R
) )
143 an32 815 . . . . . . . . . 10  |-  ( ( ( d : NN --> NN0  /\  ( `' d
" NN )  e. 
Fin )  /\  (
d " NN ) 
C_  { 0 ,  1 } )  <->  ( (
d : NN --> NN0  /\  ( d " NN )  C_  { 0 ,  1 } )  /\  ( `' d " NN )  e.  Fin )
)
144141, 142, 1433bitr4i 285 . . . . . . . . 9  |-  ( d  e.  ( ( { 0 ,  1 }  ^m  NN )  i^i 
R )  <->  ( (
d : NN --> NN0  /\  ( `' d " NN )  e.  Fin )  /\  ( d " NN )  C_  { 0 ,  1 } ) )
145144anbi1i 709 . . . . . . . 8  |-  ( ( d  e.  ( ( { 0 ,  1 }  ^m  NN )  i^i  R )  /\  sum_ k  e.  NN  (
( d `  k
)  x.  k )  =  N )  <->  ( (
( d : NN --> NN0  /\  ( `' d
" NN )  e. 
Fin )  /\  (
d " NN ) 
C_  { 0 ,  1 } )  /\  sum_ k  e.  NN  (
( d `  k
)  x.  k )  =  N ) )
14613eulerpartleme 29269 . . . . . . . . . 10  |-  ( d  e.  P  <->  ( d : NN --> NN0  /\  ( `' d " NN )  e.  Fin  /\  sum_ k  e.  NN  (
( d `  k
)  x.  k )  =  N ) )
147146anbi1i 709 . . . . . . . . 9  |-  ( ( d  e.  P  /\  ( d " NN )  C_  { 0 ,  1 } )  <->  ( (
d : NN --> NN0  /\  ( `' d " NN )  e.  Fin  /\  sum_ k  e.  NN  (
( d `  k
)  x.  k )  =  N )  /\  ( d " NN )  C_  { 0 ,  1 } ) )
148 df-3an 1009 . . . . . . . . . 10  |-  ( ( d : NN --> NN0  /\  ( `' d " NN )  e.  Fin  /\  sum_ k  e.  NN  (
( d `  k
)  x.  k )  =  N )  <->  ( (
d : NN --> NN0  /\  ( `' d " NN )  e.  Fin )  /\  sum_ k  e.  NN  ( ( d `  k )  x.  k
)  =  N ) )
149148anbi1i 709 . . . . . . . . 9  |-  ( ( ( d : NN --> NN0  /\  ( `' d
" NN )  e. 
Fin  /\  sum_ k  e.  NN  ( ( d `
 k )  x.  k )  =  N )  /\  ( d
" NN )  C_  { 0 ,  1 } )  <->  ( ( ( d : NN --> NN0  /\  ( `' d " NN )  e.  Fin )  /\  sum_ k  e.  NN  ( ( d `  k )  x.  k
)  =  N )  /\  ( d " NN )  C_  { 0 ,  1 } ) )
150 an32 815 . . . . . . . . 9  |-  ( ( ( ( d : NN --> NN0  /\  ( `' d " NN )  e.  Fin )  /\  sum_ k  e.  NN  ( ( d `  k )  x.  k
)  =  N )  /\  ( d " NN )  C_  { 0 ,  1 } )  <-> 
( ( ( d : NN --> NN0  /\  ( `' d " NN )  e.  Fin )  /\  ( d " NN )  C_  { 0 ,  1 } )  /\  sum_ k  e.  NN  (
( d `  k
)  x.  k )  =  N ) )
151147, 149, 1503bitri 279 . . . . . . . 8  |-  ( ( d  e.  P  /\  ( d " NN )  C_  { 0 ,  1 } )  <->  ( (
( d : NN --> NN0  /\  ( `' d
" NN )  e. 
Fin )  /\  (
d " NN ) 
C_  { 0 ,  1 } )  /\  sum_ k  e.  NN  (
( d `  k
)  x.  k )  =  N ) )
152145, 151bitr4i 260 . . . . . . 7  |-  ( ( d  e.  ( ( { 0 ,  1 }  ^m  NN )  i^i  R )  /\  sum_ k  e.  NN  (
( d `  k
)  x.  k )  =  N )  <->  ( d  e.  P  /\  (
d " NN ) 
C_  { 0 ,  1 } ) )
153 rabid 2953 . . . . . . 7  |-  ( d  e.  { d  e.  ( ( { 0 ,  1 }  ^m  NN )  i^i  R )  |  sum_ k  e.  NN  ( ( d `  k )  x.  k
)  =  N }  <->  ( d  e.  ( ( { 0 ,  1 }  ^m  NN )  i^i  R )  /\  sum_ k  e.  NN  (
( d `  k
)  x.  k )  =  N ) )
15413, 14, 15eulerpartlemd 29272 . . . . . . 7  |-  ( d  e.  D  <->  ( d  e.  P  /\  (
d " NN ) 
C_  { 0 ,  1 } ) )
155152, 153, 1543bitr4ri 286 . . . . . 6  |-  ( d  e.  D  <->  d  e.  { d  e.  ( ( { 0 ,  1 }  ^m  NN )  i^i  R )  | 
sum_ k  e.  NN  ( ( d `  k )  x.  k
)  =  N }
)
156118, 119, 155eqri 28226 . . . . 5  |-  D  =  { d  e.  ( ( { 0 ,  1 }  ^m  NN )  i^i  R )  | 
sum_ k  e.  NN  ( ( d `  k )  x.  k
)  =  N }
157156a1i 11 . . . 4  |-  ( T. 
->  D  =  {
d  e.  ( ( { 0 ,  1 }  ^m  NN )  i^i  R )  | 
sum_ k  e.  NN  ( ( d `  k )  x.  k
)  =  N }
)
158116, 117, 157f1oeq123d 5824 . . 3  |-  ( T. 
->  ( ( G  |`  O ) : O -1-1-onto-> D  <->  ( G  |`  { q  e.  ( T  i^i  R
)  |  sum_ k  e.  NN  ( ( q `
 k )  x.  k )  =  N } ) : {
q  e.  ( T  i^i  R )  | 
sum_ k  e.  NN  ( ( q `  k )  x.  k
)  =  N } -1-1-onto-> {
d  e.  ( ( { 0 ,  1 }  ^m  NN )  i^i  R )  | 
sum_ k  e.  NN  ( ( d `  k )  x.  k
)  =  N }
) )
15972, 158mpbird 240 . 2  |-  ( T. 
->  ( G  |`  O ) : O -1-1-onto-> D )
160159trud 1461 1  |-  ( G  |`  O ) : O -1-1-onto-> D
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    /\ wa 376    /\ w3a 1007    = wceq 1452   T. wtru 1453    e. wcel 1904   {cab 2457   A.wral 2756   {crab 2760   _Vcvv 3031    i^i cin 3389    C_ wss 3390   (/)c0 3722   ~Pcpw 3942   {cpr 3961   class class class wbr 4395   {copab 4453    |-> cmpt 4454   `'ccnv 4838   dom cdm 4839   ran crn 4840    |` cres 4841   "cima 4842    o. ccom 4843    Fn wfn 5584   -->wf 5585   -1-1-onto->wf1o 5588   ` cfv 5589  (class class class)co 6308    |-> cmpt2 6310   supp csupp 6933    ^m cmap 7490   Fincfn 7587   0cc0 9557   1c1 9558    x. cmul 9562    <_ cle 9694   NNcn 10631   2c2 10681   NN0cn0 10893   ^cexp 12310   sum_csu 13829    || cdvds 14382  bitscbits 14471  𝟭cind 28906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-inf2 8164  ax-ac2 8911  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634  ax-pre-sup 9635
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-fal 1458  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-disj 4367  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-se 4799  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-isom 5598  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-1st 6812  df-2nd 6813  df-supp 6934  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-2o 7201  df-oadd 7204  df-er 7381  df-map 7492  df-pm 7493  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-fsupp 7902  df-sup 7974  df-inf 7975  df-oi 8043  df-card 8391  df-acn 8394  df-ac 8565  df-cda 8616  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-div 10292  df-nn 10632  df-2 10690  df-3 10691  df-n0 10894  df-z 10962  df-uz 11183  df-rp 11326  df-fz 11811  df-fzo 11943  df-fl 12061  df-mod 12130  df-seq 12252  df-exp 12311  df-hash 12554  df-cj 13239  df-re 13240  df-im 13241  df-sqrt 13375  df-abs 13376  df-clim 13629  df-sum 13830  df-dvds 14383  df-bits 14474  df-ind 28907
This theorem is referenced by:  eulerpart  29288
  Copyright terms: Public domain W3C validator