Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartlemgs2 Structured version   Visualization version   Unicode version

Theorem eulerpartlemgs2 29286
Description: Lemma for eulerpart 29288: The  G function also preserves partition sums. (Contributed by Thierry Arnoux, 10-Sep-2017.)
Hypotheses
Ref Expression
eulerpart.p  |-  P  =  { f  e.  ( NN0  ^m  NN )  |  ( ( `' f " NN )  e.  Fin  /\  sum_ k  e.  NN  (
( f `  k
)  x.  k )  =  N ) }
eulerpart.o  |-  O  =  { g  e.  P  |  A. n  e.  ( `' g " NN )  -.  2  ||  n }
eulerpart.d  |-  D  =  { g  e.  P  |  A. n  e.  NN  ( g `  n
)  <_  1 }
eulerpart.j  |-  J  =  { z  e.  NN  |  -.  2  ||  z }
eulerpart.f  |-  F  =  ( x  e.  J ,  y  e.  NN0  |->  ( ( 2 ^ y )  x.  x
) )
eulerpart.h  |-  H  =  { r  e.  ( ( ~P NN0  i^i  Fin )  ^m  J )  |  ( r supp  (/) )  e. 
Fin }
eulerpart.m  |-  M  =  ( r  e.  H  |->  { <. x ,  y
>.  |  ( x  e.  J  /\  y  e.  ( r `  x
) ) } )
eulerpart.r  |-  R  =  { f  |  ( `' f " NN )  e.  Fin }
eulerpart.t  |-  T  =  { f  e.  ( NN0  ^m  NN )  |  ( `' f
" NN )  C_  J }
eulerpart.g  |-  G  =  ( o  e.  ( T  i^i  R ) 
|->  ( (𝟭 `  NN ) `  ( F " ( M `  (bits  o.  ( o  |`  J ) ) ) ) ) )
eulerpart.s  |-  S  =  ( f  e.  ( ( NN0  ^m  NN )  i^i  R )  |->  sum_ k  e.  NN  (
( f `  k
)  x.  k ) )
Assertion
Ref Expression
eulerpartlemgs2  |-  ( A  e.  ( T  i^i  R )  ->  ( S `  ( G `  A
) )  =  ( S `  A ) )
Distinct variable groups:    f, g,
k, n, o, x, y, z    f, r, A, g, k, n, o, x, y    f, G, k    n, F, o, x, y    o, H, r    f, J, n, o, r, x, y   
n, M, o, r, x, y    f, N, g, k, n, x   
n, O, r, x, y    P, g, k, n    R, f, k, n, o, r, x, y    T, f, k, n, o, r, x, y
Allowed substitution hints:    A( z)    D( x, y, z, f, g, k, n, o, r)    P( x, y, z, f, o, r)    R( z, g)    S( x, y, z, f, g, k, n, o, r)    T( z, g)    F( z, f, g, k, r)    G( x, y, z, g, n, o, r)    H( x, y, z, f, g, k, n)    J( z,
g, k)    M( z,
f, g, k)    N( y, z, o, r)    O( z, f, g, k, o)

Proof of Theorem eulerpartlemgs2
Dummy variables  t  m  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnvimass 5194 . . . . . . . 8  |-  ( `' ( G `  A
) " NN ) 
C_  dom  ( G `  A )
2 eulerpart.p . . . . . . . . . . . . . 14  |-  P  =  { f  e.  ( NN0  ^m  NN )  |  ( ( `' f " NN )  e.  Fin  /\  sum_ k  e.  NN  (
( f `  k
)  x.  k )  =  N ) }
3 eulerpart.o . . . . . . . . . . . . . 14  |-  O  =  { g  e.  P  |  A. n  e.  ( `' g " NN )  -.  2  ||  n }
4 eulerpart.d . . . . . . . . . . . . . 14  |-  D  =  { g  e.  P  |  A. n  e.  NN  ( g `  n
)  <_  1 }
5 eulerpart.j . . . . . . . . . . . . . 14  |-  J  =  { z  e.  NN  |  -.  2  ||  z }
6 eulerpart.f . . . . . . . . . . . . . 14  |-  F  =  ( x  e.  J ,  y  e.  NN0  |->  ( ( 2 ^ y )  x.  x
) )
7 eulerpart.h . . . . . . . . . . . . . 14  |-  H  =  { r  e.  ( ( ~P NN0  i^i  Fin )  ^m  J )  |  ( r supp  (/) )  e. 
Fin }
8 eulerpart.m . . . . . . . . . . . . . 14  |-  M  =  ( r  e.  H  |->  { <. x ,  y
>.  |  ( x  e.  J  /\  y  e.  ( r `  x
) ) } )
9 eulerpart.r . . . . . . . . . . . . . 14  |-  R  =  { f  |  ( `' f " NN )  e.  Fin }
10 eulerpart.t . . . . . . . . . . . . . 14  |-  T  =  { f  e.  ( NN0  ^m  NN )  |  ( `' f
" NN )  C_  J }
11 eulerpart.g . . . . . . . . . . . . . 14  |-  G  =  ( o  e.  ( T  i^i  R ) 
|->  ( (𝟭 `  NN ) `  ( F " ( M `  (bits  o.  ( o  |`  J ) ) ) ) ) )
122, 3, 4, 5, 6, 7, 8, 9, 10, 11eulerpartgbij 29278 . . . . . . . . . . . . 13  |-  G :
( T  i^i  R
)
-1-1-onto-> ( ( { 0 ,  1 }  ^m  NN )  i^i  R )
13 f1of 5828 . . . . . . . . . . . . 13  |-  ( G : ( T  i^i  R ) -1-1-onto-> ( ( { 0 ,  1 }  ^m  NN )  i^i  R )  ->  G : ( T  i^i  R ) --> ( ( { 0 ,  1 }  ^m  NN )  i^i  R ) )
1412, 13ax-mp 5 . . . . . . . . . . . 12  |-  G :
( T  i^i  R
) --> ( ( { 0 ,  1 }  ^m  NN )  i^i 
R )
1514ffvelrni 6036 . . . . . . . . . . 11  |-  ( A  e.  ( T  i^i  R )  ->  ( G `  A )  e.  ( ( { 0 ,  1 }  ^m  NN )  i^i  R ) )
16 elin 3608 . . . . . . . . . . 11  |-  ( ( G `  A )  e.  ( ( { 0 ,  1 }  ^m  NN )  i^i 
R )  <->  ( ( G `  A )  e.  ( { 0 ,  1 }  ^m  NN )  /\  ( G `  A )  e.  R
) )
1715, 16sylib 201 . . . . . . . . . 10  |-  ( A  e.  ( T  i^i  R )  ->  ( ( G `  A )  e.  ( { 0 ,  1 }  ^m  NN )  /\  ( G `  A )  e.  R
) )
1817simpld 466 . . . . . . . . 9  |-  ( A  e.  ( T  i^i  R )  ->  ( G `  A )  e.  ( { 0 ,  1 }  ^m  NN ) )
19 elmapi 7511 . . . . . . . . 9  |-  ( ( G `  A )  e.  ( { 0 ,  1 }  ^m  NN )  ->  ( G `
 A ) : NN --> { 0 ,  1 } )
20 fdm 5745 . . . . . . . . 9  |-  ( ( G `  A ) : NN --> { 0 ,  1 }  ->  dom  ( G `  A
)  =  NN )
2118, 19, 203syl 18 . . . . . . . 8  |-  ( A  e.  ( T  i^i  R )  ->  dom  ( G `
 A )  =  NN )
221, 21syl5sseq 3466 . . . . . . 7  |-  ( A  e.  ( T  i^i  R )  ->  ( `' ( G `  A )
" NN )  C_  NN )
2322sselda 3418 . . . . . 6  |-  ( ( A  e.  ( T  i^i  R )  /\  k  e.  ( `' ( G `  A )
" NN ) )  ->  k  e.  NN )
242, 3, 4, 5, 6, 7, 8, 9, 10, 11eulerpartlemgvv 29282 . . . . . . 7  |-  ( ( A  e.  ( T  i^i  R )  /\  k  e.  NN )  ->  ( ( G `  A ) `  k
)  =  if ( E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n )  x.  t )  =  k ,  1 ,  0 ) )
2524oveq1d 6323 . . . . . 6  |-  ( ( A  e.  ( T  i^i  R )  /\  k  e.  NN )  ->  ( ( ( G `
 A ) `  k )  x.  k
)  =  ( if ( E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  k ,  1 ,  0 )  x.  k ) )
2623, 25syldan 478 . . . . 5  |-  ( ( A  e.  ( T  i^i  R )  /\  k  e.  ( `' ( G `  A )
" NN ) )  ->  ( ( ( G `  A ) `
 k )  x.  k )  =  ( if ( E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  k ,  1 ,  0 )  x.  k ) )
2726sumeq2dv 13846 . . . 4  |-  ( A  e.  ( T  i^i  R )  ->  sum_ k  e.  ( `' ( G `
 A ) " NN ) ( ( ( G `  A ) `
 k )  x.  k )  =  sum_ k  e.  ( `' ( G `  A )
" NN ) ( if ( E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  k ,  1 ,  0 )  x.  k ) )
28 eqeq2 2482 . . . . . . . . . . . . 13  |-  ( m  =  k  ->  (
( ( 2 ^ n )  x.  t
)  =  m  <->  ( (
2 ^ n )  x.  t )  =  k ) )
29282rexbidv 2897 . . . . . . . . . . . 12  |-  ( m  =  k  ->  ( E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n )  x.  t )  =  m  <->  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n )  x.  t )  =  k ) )
3029elrab 3184 . . . . . . . . . . 11  |-  ( k  e.  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  m }  <->  ( k  e.  NN  /\  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  k ) )
3130simprbi 471 . . . . . . . . . 10  |-  ( k  e.  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  m }  ->  E. t  e.  NN  E. n  e.  (bits `  ( A `  t )
) ( ( 2 ^ n )  x.  t )  =  k )
3231iftrued 3880 . . . . . . . . 9  |-  ( k  e.  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  m }  ->  if ( E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  k ,  1 ,  0 )  =  1 )
3332oveq1d 6323 . . . . . . . 8  |-  ( k  e.  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  m }  ->  ( if ( E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  k ,  1 ,  0 )  x.  k )  =  ( 1  x.  k ) )
34 elrabi 3181 . . . . . . . . . 10  |-  ( k  e.  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  m }  ->  k  e.  NN )
3534nncnd 10647 . . . . . . . . 9  |-  ( k  e.  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  m }  ->  k  e.  CC )
3635mulid2d 9679 . . . . . . . 8  |-  ( k  e.  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  m }  ->  ( 1  x.  k )  =  k )
3733, 36eqtrd 2505 . . . . . . 7  |-  ( k  e.  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  m }  ->  ( if ( E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  k ,  1 ,  0 )  x.  k )  =  k )
3837sumeq2i 13842 . . . . . 6  |-  sum_ k  e.  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n )  x.  t )  =  m }  ( if ( E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n )  x.  t )  =  k ,  1 ,  0 )  x.  k )  =  sum_ k  e.  {
m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n )  x.  t )  =  m } k
39 id 22 . . . . . . 7  |-  ( k  =  ( ( 2 ^ ( 2nd `  w
) )  x.  ( 1st `  w ) )  ->  k  =  ( ( 2 ^ ( 2nd `  w ) )  x.  ( 1st `  w
) ) )
402, 3, 4, 5, 6, 7, 8, 9, 10, 11eulerpartlemgf 29285 . . . . . . . . 9  |-  ( A  e.  ( T  i^i  R )  ->  ( `' ( G `  A )
" NN )  e. 
Fin )
4134adantl 473 . . . . . . . . . . . 12  |-  ( ( A  e.  ( T  i^i  R )  /\  k  e.  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  m } )  ->  k  e.  NN )
4241, 24syldan 478 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ( T  i^i  R )  /\  k  e.  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  m } )  ->  ( ( G `
 A ) `  k )  =  if ( E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  k ,  1 ,  0 ) )
4331adantl 473 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ( T  i^i  R )  /\  k  e.  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  m } )  ->  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n )  x.  t )  =  k )
4443iftrued 3880 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ( T  i^i  R )  /\  k  e.  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  m } )  ->  if ( E. t  e.  NN  E. n  e.  (bits `  ( A `  t )
) ( ( 2 ^ n )  x.  t )  =  k ,  1 ,  0 )  =  1 )
4542, 44eqtrd 2505 . . . . . . . . . . . . 13  |-  ( ( A  e.  ( T  i^i  R )  /\  k  e.  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  m } )  ->  ( ( G `
 A ) `  k )  =  1 )
46 1nn 10642 . . . . . . . . . . . . 13  |-  1  e.  NN
4745, 46syl6eqel 2557 . . . . . . . . . . . 12  |-  ( ( A  e.  ( T  i^i  R )  /\  k  e.  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  m } )  ->  ( ( G `
 A ) `  k )  e.  NN )
4818, 19syl 17 . . . . . . . . . . . . . 14  |-  ( A  e.  ( T  i^i  R )  ->  ( G `  A ) : NN --> { 0 ,  1 } )
49 ffn 5739 . . . . . . . . . . . . . 14  |-  ( ( G `  A ) : NN --> { 0 ,  1 }  ->  ( G `  A )  Fn  NN )
50 elpreima 6017 . . . . . . . . . . . . . 14  |-  ( ( G `  A )  Fn  NN  ->  (
k  e.  ( `' ( G `  A
) " NN )  <-> 
( k  e.  NN  /\  ( ( G `  A ) `  k
)  e.  NN ) ) )
5148, 49, 503syl 18 . . . . . . . . . . . . 13  |-  ( A  e.  ( T  i^i  R )  ->  ( k  e.  ( `' ( G `
 A ) " NN )  <->  ( k  e.  NN  /\  ( ( G `  A ) `
 k )  e.  NN ) ) )
5251adantr 472 . . . . . . . . . . . 12  |-  ( ( A  e.  ( T  i^i  R )  /\  k  e.  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  m } )  ->  ( k  e.  ( `' ( G `
 A ) " NN )  <->  ( k  e.  NN  /\  ( ( G `  A ) `
 k )  e.  NN ) ) )
5341, 47, 52mpbir2and 936 . . . . . . . . . . 11  |-  ( ( A  e.  ( T  i^i  R )  /\  k  e.  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  m } )  ->  k  e.  ( `' ( G `  A ) " NN ) )
5453ex 441 . . . . . . . . . 10  |-  ( A  e.  ( T  i^i  R )  ->  ( k  e.  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n )  x.  t )  =  m }  ->  k  e.  ( `' ( G `  A ) " NN ) ) )
5554ssrdv 3424 . . . . . . . . 9  |-  ( A  e.  ( T  i^i  R )  ->  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  m }  C_  ( `' ( G `  A ) " NN ) )
56 ssfi 7810 . . . . . . . . 9  |-  ( ( ( `' ( G `
 A ) " NN )  e.  Fin  /\ 
{ m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n )  x.  t )  =  m }  C_  ( `' ( G `  A )
" NN ) )  ->  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  m }  e.  Fin )
5740, 55, 56syl2anc 673 . . . . . . . 8  |-  ( A  e.  ( T  i^i  R )  ->  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  m }  e.  Fin )
58 cnvexg 6758 . . . . . . . . . . 11  |-  ( A  e.  ( T  i^i  R )  ->  `' A  e.  _V )
59 imaexg 6749 . . . . . . . . . . 11  |-  ( `' A  e.  _V  ->  ( `' A " NN )  e.  _V )
60 inex1g 4539 . . . . . . . . . . 11  |-  ( ( `' A " NN )  e.  _V  ->  (
( `' A " NN )  i^i  J )  e.  _V )
6158, 59, 603syl 18 . . . . . . . . . 10  |-  ( A  e.  ( T  i^i  R )  ->  ( ( `' A " NN )  i^i  J )  e. 
_V )
62 snex 4641 . . . . . . . . . . . 12  |-  { t }  e.  _V
63 fvex 5889 . . . . . . . . . . . 12  |-  (bits `  ( A `  t ) )  e.  _V
6462, 63xpex 6614 . . . . . . . . . . 11  |-  ( { t }  X.  (bits `  ( A `  t
) ) )  e. 
_V
6564rgenw 2768 . . . . . . . . . 10  |-  A. t  e.  ( ( `' A " NN )  i^i  J
) ( { t }  X.  (bits `  ( A `  t ) ) )  e.  _V
66 iunexg 6788 . . . . . . . . . 10  |-  ( ( ( ( `' A " NN )  i^i  J
)  e.  _V  /\  A. t  e.  ( ( `' A " NN )  i^i  J ) ( { t }  X.  (bits `  ( A `  t ) ) )  e.  _V )  ->  U_ t  e.  (
( `' A " NN )  i^i  J ) ( { t }  X.  (bits `  ( A `  t )
) )  e.  _V )
6761, 65, 66sylancl 675 . . . . . . . . 9  |-  ( A  e.  ( T  i^i  R )  ->  U_ t  e.  ( ( `' A " NN )  i^i  J
) ( { t }  X.  (bits `  ( A `  t ) ) )  e.  _V )
68 eqid 2471 . . . . . . . . . 10  |-  U_ t  e.  ( ( `' A " NN )  i^i  J
) ( { t }  X.  (bits `  ( A `  t ) ) )  =  U_ t  e.  ( ( `' A " NN )  i^i  J ) ( { t }  X.  (bits `  ( A `  t ) ) )
692, 3, 4, 5, 6, 7, 8, 9, 10, 11, 68eulerpartlemgh 29284 . . . . . . . . 9  |-  ( A  e.  ( T  i^i  R )  ->  ( F  |` 
U_ t  e.  ( ( `' A " NN )  i^i  J ) ( { t }  X.  (bits `  ( A `  t )
) ) ) :
U_ t  e.  ( ( `' A " NN )  i^i  J ) ( { t }  X.  (bits `  ( A `  t )
) ) -1-1-onto-> { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n )  x.  t )  =  m } )
70 f1oeng 7606 . . . . . . . . 9  |-  ( (
U_ t  e.  ( ( `' A " NN )  i^i  J ) ( { t }  X.  (bits `  ( A `  t )
) )  e.  _V  /\  ( F  |`  U_ t  e.  ( ( `' A " NN )  i^i  J
) ( { t }  X.  (bits `  ( A `  t ) ) ) ) :
U_ t  e.  ( ( `' A " NN )  i^i  J ) ( { t }  X.  (bits `  ( A `  t )
) ) -1-1-onto-> { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n )  x.  t )  =  m } )  ->  U_ t  e.  ( ( `' A " NN )  i^i  J
) ( { t }  X.  (bits `  ( A `  t ) ) )  ~~  {
m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n )  x.  t )  =  m } )
7167, 69, 70syl2anc 673 . . . . . . . 8  |-  ( A  e.  ( T  i^i  R )  ->  U_ t  e.  ( ( `' A " NN )  i^i  J
) ( { t }  X.  (bits `  ( A `  t ) ) )  ~~  {
m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n )  x.  t )  =  m } )
72 enfii 7807 . . . . . . . 8  |-  ( ( { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n )  x.  t )  =  m }  e.  Fin  /\  U_ t  e.  ( ( `' A " NN )  i^i  J ) ( { t }  X.  (bits `  ( A `  t ) ) ) 
~~  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  m } )  ->  U_ t  e.  ( ( `' A " NN )  i^i  J ) ( { t }  X.  (bits `  ( A `  t )
) )  e.  Fin )
7357, 71, 72syl2anc 673 . . . . . . 7  |-  ( A  e.  ( T  i^i  R )  ->  U_ t  e.  ( ( `' A " NN )  i^i  J
) ( { t }  X.  (bits `  ( A `  t ) ) )  e.  Fin )
74 fvres 5893 . . . . . . . . 9  |-  ( w  e.  U_ t  e.  ( ( `' A " NN )  i^i  J
) ( { t }  X.  (bits `  ( A `  t ) ) )  ->  (
( F  |`  U_ t  e.  ( ( `' A " NN )  i^i  J
) ( { t }  X.  (bits `  ( A `  t ) ) ) ) `  w )  =  ( F `  w ) )
7574adantl 473 . . . . . . . 8  |-  ( ( A  e.  ( T  i^i  R )  /\  w  e.  U_ t  e.  ( ( `' A " NN )  i^i  J
) ( { t }  X.  (bits `  ( A `  t ) ) ) )  -> 
( ( F  |`  U_ t  e.  ( ( `' A " NN )  i^i  J ) ( { t }  X.  (bits `  ( A `  t ) ) ) ) `  w )  =  ( F `  w ) )
76 inss2 3644 . . . . . . . . . . . . . . 15  |-  ( ( `' A " NN )  i^i  J )  C_  J
77 simpr 468 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ( T  i^i  R )  /\  t  e.  ( ( `' A " NN )  i^i  J ) )  ->  t  e.  ( ( `' A " NN )  i^i  J ) )
7876, 77sseldi 3416 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ( T  i^i  R )  /\  t  e.  ( ( `' A " NN )  i^i  J ) )  ->  t  e.  J
)
7978snssd 4108 . . . . . . . . . . . . 13  |-  ( ( A  e.  ( T  i^i  R )  /\  t  e.  ( ( `' A " NN )  i^i  J ) )  ->  { t } 
C_  J )
80 bitsss 14478 . . . . . . . . . . . . 13  |-  (bits `  ( A `  t ) )  C_  NN0
81 xpss12 4945 . . . . . . . . . . . . 13  |-  ( ( { t }  C_  J  /\  (bits `  ( A `  t )
)  C_  NN0 )  -> 
( { t }  X.  (bits `  ( A `  t )
) )  C_  ( J  X.  NN0 ) )
8279, 80, 81sylancl 675 . . . . . . . . . . . 12  |-  ( ( A  e.  ( T  i^i  R )  /\  t  e.  ( ( `' A " NN )  i^i  J ) )  ->  ( { t }  X.  (bits `  ( A `  t ) ) )  C_  ( J  X.  NN0 ) )
8382ralrimiva 2809 . . . . . . . . . . 11  |-  ( A  e.  ( T  i^i  R )  ->  A. t  e.  ( ( `' A " NN )  i^i  J
) ( { t }  X.  (bits `  ( A `  t ) ) )  C_  ( J  X.  NN0 ) )
84 iunss 4310 . . . . . . . . . . 11  |-  ( U_ t  e.  ( ( `' A " NN )  i^i  J ) ( { t }  X.  (bits `  ( A `  t ) ) ) 
C_  ( J  X.  NN0 )  <->  A. t  e.  ( ( `' A " NN )  i^i  J ) ( { t }  X.  (bits `  ( A `  t )
) )  C_  ( J  X.  NN0 ) )
8583, 84sylibr 217 . . . . . . . . . 10  |-  ( A  e.  ( T  i^i  R )  ->  U_ t  e.  ( ( `' A " NN )  i^i  J
) ( { t }  X.  (bits `  ( A `  t ) ) )  C_  ( J  X.  NN0 ) )
8685sselda 3418 . . . . . . . . 9  |-  ( ( A  e.  ( T  i^i  R )  /\  w  e.  U_ t  e.  ( ( `' A " NN )  i^i  J
) ( { t }  X.  (bits `  ( A `  t ) ) ) )  ->  w  e.  ( J  X.  NN0 ) )
875, 6oddpwdcv 29261 . . . . . . . . 9  |-  ( w  e.  ( J  X.  NN0 )  ->  ( F `
 w )  =  ( ( 2 ^ ( 2nd `  w
) )  x.  ( 1st `  w ) ) )
8886, 87syl 17 . . . . . . . 8  |-  ( ( A  e.  ( T  i^i  R )  /\  w  e.  U_ t  e.  ( ( `' A " NN )  i^i  J
) ( { t }  X.  (bits `  ( A `  t ) ) ) )  -> 
( F `  w
)  =  ( ( 2 ^ ( 2nd `  w ) )  x.  ( 1st `  w
) ) )
8975, 88eqtrd 2505 . . . . . . 7  |-  ( ( A  e.  ( T  i^i  R )  /\  w  e.  U_ t  e.  ( ( `' A " NN )  i^i  J
) ( { t }  X.  (bits `  ( A `  t ) ) ) )  -> 
( ( F  |`  U_ t  e.  ( ( `' A " NN )  i^i  J ) ( { t }  X.  (bits `  ( A `  t ) ) ) ) `  w )  =  ( ( 2 ^ ( 2nd `  w
) )  x.  ( 1st `  w ) ) )
9041nncnd 10647 . . . . . . 7  |-  ( ( A  e.  ( T  i^i  R )  /\  k  e.  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  m } )  ->  k  e.  CC )
9139, 73, 69, 89, 90fsumf1o 13866 . . . . . 6  |-  ( A  e.  ( T  i^i  R )  ->  sum_ k  e. 
{ m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n )  x.  t )  =  m } k  =  sum_ w  e.  U_  t  e.  ( ( `' A " NN )  i^i  J
) ( { t }  X.  (bits `  ( A `  t ) ) ) ( ( 2 ^ ( 2nd `  w ) )  x.  ( 1st `  w
) ) )
9238, 91syl5eq 2517 . . . . 5  |-  ( A  e.  ( T  i^i  R )  ->  sum_ k  e. 
{ m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n )  x.  t )  =  m }  ( if ( E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n )  x.  t )  =  k ,  1 ,  0 )  x.  k )  =  sum_ w  e.  U_  t  e.  ( ( `' A " NN )  i^i  J ) ( { t }  X.  (bits `  ( A `  t ) ) ) ( ( 2 ^ ( 2nd `  w
) )  x.  ( 1st `  w ) ) )
93 ax-1cn 9615 . . . . . . . . 9  |-  1  e.  CC
94 0cn 9653 . . . . . . . . 9  |-  0  e.  CC
9593, 94keepel 3939 . . . . . . . 8  |-  if ( E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n )  x.  t )  =  k ,  1 ,  0 )  e.  CC
9695a1i 11 . . . . . . 7  |-  ( ( A  e.  ( T  i^i  R )  /\  k  e.  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  m } )  ->  if ( E. t  e.  NN  E. n  e.  (bits `  ( A `  t )
) ( ( 2 ^ n )  x.  t )  =  k ,  1 ,  0 )  e.  CC )
97 ssrab2 3500 . . . . . . . . 9  |-  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  m }  C_  NN
98 simpr 468 . . . . . . . . 9  |-  ( ( A  e.  ( T  i^i  R )  /\  k  e.  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  m } )  ->  k  e.  {
m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n )  x.  t )  =  m } )
9997, 98sseldi 3416 . . . . . . . 8  |-  ( ( A  e.  ( T  i^i  R )  /\  k  e.  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  m } )  ->  k  e.  NN )
10099nncnd 10647 . . . . . . 7  |-  ( ( A  e.  ( T  i^i  R )  /\  k  e.  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  m } )  ->  k  e.  CC )
10196, 100mulcld 9681 . . . . . 6  |-  ( ( A  e.  ( T  i^i  R )  /\  k  e.  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  m } )  ->  ( if ( E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n )  x.  t )  =  k ,  1 ,  0 )  x.  k )  e.  CC )
102 simpr 468 . . . . . . . . . . 11  |-  ( ( A  e.  ( T  i^i  R )  /\  k  e.  ( ( `' ( G `  A ) " NN )  \  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  m } ) )  ->  k  e.  ( ( `' ( G `  A )
" NN )  \  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n )  x.  t )  =  m } ) )
103102eldifbd 3403 . . . . . . . . . 10  |-  ( ( A  e.  ( T  i^i  R )  /\  k  e.  ( ( `' ( G `  A ) " NN )  \  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  m } ) )  ->  -.  k  e.  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n )  x.  t )  =  m } )
10422ssdifssd 3560 . . . . . . . . . . 11  |-  ( A  e.  ( T  i^i  R )  ->  ( ( `' ( G `  A ) " NN )  \  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  m } ) 
C_  NN )
105104sselda 3418 . . . . . . . . . 10  |-  ( ( A  e.  ( T  i^i  R )  /\  k  e.  ( ( `' ( G `  A ) " NN )  \  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  m } ) )  ->  k  e.  NN )
10630notbii 303 . . . . . . . . . . 11  |-  ( -.  k  e.  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  m }  <->  -.  (
k  e.  NN  /\  E. t  e.  NN  E. n  e.  (bits `  ( A `  t )
) ( ( 2 ^ n )  x.  t )  =  k ) )
107 imnan 429 . . . . . . . . . . 11  |-  ( ( k  e.  NN  ->  -. 
E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n )  x.  t )  =  k )  <->  -.  ( k  e.  NN  /\  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  k ) )
108106, 107sylbb2 221 . . . . . . . . . 10  |-  ( -.  k  e.  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  m }  ->  ( k  e.  NN  ->  -. 
E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n )  x.  t )  =  k ) )
109103, 105, 108sylc 61 . . . . . . . . 9  |-  ( ( A  e.  ( T  i^i  R )  /\  k  e.  ( ( `' ( G `  A ) " NN )  \  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  m } ) )  ->  -.  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  k )
110109iffalsed 3883 . . . . . . . 8  |-  ( ( A  e.  ( T  i^i  R )  /\  k  e.  ( ( `' ( G `  A ) " NN )  \  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  m } ) )  ->  if ( E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n )  x.  t )  =  k ,  1 ,  0 )  =  0 )
111110oveq1d 6323 . . . . . . 7  |-  ( ( A  e.  ( T  i^i  R )  /\  k  e.  ( ( `' ( G `  A ) " NN )  \  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  m } ) )  ->  ( if ( E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n )  x.  t )  =  k ,  1 ,  0 )  x.  k )  =  ( 0  x.  k ) )
112 nnsscn 10636 . . . . . . . . . 10  |-  NN  C_  CC
113104, 112syl6ss 3430 . . . . . . . . 9  |-  ( A  e.  ( T  i^i  R )  ->  ( ( `' ( G `  A ) " NN )  \  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  m } ) 
C_  CC )
114113sselda 3418 . . . . . . . 8  |-  ( ( A  e.  ( T  i^i  R )  /\  k  e.  ( ( `' ( G `  A ) " NN )  \  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  m } ) )  ->  k  e.  CC )
115114mul02d 9849 . . . . . . 7  |-  ( ( A  e.  ( T  i^i  R )  /\  k  e.  ( ( `' ( G `  A ) " NN )  \  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  m } ) )  ->  ( 0  x.  k )  =  0 )
116111, 115eqtrd 2505 . . . . . 6  |-  ( ( A  e.  ( T  i^i  R )  /\  k  e.  ( ( `' ( G `  A ) " NN )  \  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  m } ) )  ->  ( if ( E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n )  x.  t )  =  k ,  1 ,  0 )  x.  k )  =  0 )
11755, 101, 116, 40fsumss 13868 . . . . 5  |-  ( A  e.  ( T  i^i  R )  ->  sum_ k  e. 
{ m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n )  x.  t )  =  m }  ( if ( E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n )  x.  t )  =  k ,  1 ,  0 )  x.  k )  =  sum_ k  e.  ( `' ( G `  A ) " NN ) ( if ( E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n )  x.  t )  =  k ,  1 ,  0 )  x.  k ) )
11892, 117eqtr3d 2507 . . . 4  |-  ( A  e.  ( T  i^i  R )  ->  sum_ w  e. 
U_  t  e.  ( ( `' A " NN )  i^i  J ) ( { t }  X.  (bits `  ( A `  t )
) ) ( ( 2 ^ ( 2nd `  w ) )  x.  ( 1st `  w
) )  =  sum_ k  e.  ( `' ( G `  A )
" NN ) ( if ( E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  k ,  1 ,  0 )  x.  k ) )
1192, 3, 4, 5, 6, 7, 8, 9, 10eulerpartlemt0 29275 . . . . . . . . . . . . 13  |-  ( A  e.  ( T  i^i  R )  <->  ( A  e.  ( NN0  ^m  NN )  /\  ( `' A " NN )  e.  Fin  /\  ( `' A " NN )  C_  J ) )
120119simp1bi 1045 . . . . . . . . . . . 12  |-  ( A  e.  ( T  i^i  R )  ->  A  e.  ( NN0  ^m  NN ) )
121 elmapi 7511 . . . . . . . . . . . 12  |-  ( A  e.  ( NN0  ^m  NN )  ->  A : NN
--> NN0 )
122120, 121syl 17 . . . . . . . . . . 11  |-  ( A  e.  ( T  i^i  R )  ->  A : NN
--> NN0 )
123122adantr 472 . . . . . . . . . 10  |-  ( ( A  e.  ( T  i^i  R )  /\  t  e.  ( ( `' A " NN )  i^i  J ) )  ->  A : NN --> NN0 )
124 cnvimass 5194 . . . . . . . . . . . . 13  |-  ( `' A " NN ) 
C_  dom  A
125 fdm 5745 . . . . . . . . . . . . . 14  |-  ( A : NN --> NN0  ->  dom 
A  =  NN )
126122, 125syl 17 . . . . . . . . . . . . 13  |-  ( A  e.  ( T  i^i  R )  ->  dom  A  =  NN )
127124, 126syl5sseq 3466 . . . . . . . . . . . 12  |-  ( A  e.  ( T  i^i  R )  ->  ( `' A " NN )  C_  NN )
128127adantr 472 . . . . . . . . . . 11  |-  ( ( A  e.  ( T  i^i  R )  /\  t  e.  ( ( `' A " NN )  i^i  J ) )  ->  ( `' A " NN )  C_  NN )
129 inss1 3643 . . . . . . . . . . . 12  |-  ( ( `' A " NN )  i^i  J )  C_  ( `' A " NN )
130129, 77sseldi 3416 . . . . . . . . . . 11  |-  ( ( A  e.  ( T  i^i  R )  /\  t  e.  ( ( `' A " NN )  i^i  J ) )  ->  t  e.  ( `' A " NN ) )
131128, 130sseldd 3419 . . . . . . . . . 10  |-  ( ( A  e.  ( T  i^i  R )  /\  t  e.  ( ( `' A " NN )  i^i  J ) )  ->  t  e.  NN )
132123, 131ffvelrnd 6038 . . . . . . . . 9  |-  ( ( A  e.  ( T  i^i  R )  /\  t  e.  ( ( `' A " NN )  i^i  J ) )  ->  ( A `  t )  e.  NN0 )
133 bitsfi 14490 . . . . . . . . 9  |-  ( ( A `  t )  e.  NN0  ->  (bits `  ( A `  t ) )  e.  Fin )
134132, 133syl 17 . . . . . . . 8  |-  ( ( A  e.  ( T  i^i  R )  /\  t  e.  ( ( `' A " NN )  i^i  J ) )  ->  (bits `  ( A `  t )
)  e.  Fin )
135131nncnd 10647 . . . . . . . 8  |-  ( ( A  e.  ( T  i^i  R )  /\  t  e.  ( ( `' A " NN )  i^i  J ) )  ->  t  e.  CC )
136 2cnd 10704 . . . . . . . . . 10  |-  ( ( A  e.  ( T  i^i  R )  /\  ( t  e.  ( ( `' A " NN )  i^i  J )  /\  n  e.  (bits `  ( A `  t
) ) ) )  ->  2  e.  CC )
137 simprr 774 . . . . . . . . . . 11  |-  ( ( A  e.  ( T  i^i  R )  /\  ( t  e.  ( ( `' A " NN )  i^i  J )  /\  n  e.  (bits `  ( A `  t
) ) ) )  ->  n  e.  (bits `  ( A `  t
) ) )
13880, 137sseldi 3416 . . . . . . . . . 10  |-  ( ( A  e.  ( T  i^i  R )  /\  ( t  e.  ( ( `' A " NN )  i^i  J )  /\  n  e.  (bits `  ( A `  t
) ) ) )  ->  n  e.  NN0 )
139136, 138expcld 12454 . . . . . . . . 9  |-  ( ( A  e.  ( T  i^i  R )  /\  ( t  e.  ( ( `' A " NN )  i^i  J )  /\  n  e.  (bits `  ( A `  t
) ) ) )  ->  ( 2 ^ n )  e.  CC )
140139anassrs 660 . . . . . . . 8  |-  ( ( ( A  e.  ( T  i^i  R )  /\  t  e.  ( ( `' A " NN )  i^i  J ) )  /\  n  e.  (bits `  ( A `  t ) ) )  ->  ( 2 ^ n )  e.  CC )
141134, 135, 140fsummulc1 13923 . . . . . . 7  |-  ( ( A  e.  ( T  i^i  R )  /\  t  e.  ( ( `' A " NN )  i^i  J ) )  ->  ( sum_ n  e.  (bits `  ( A `  t ) ) ( 2 ^ n )  x.  t )  = 
sum_ n  e.  (bits `  ( A `  t
) ) ( ( 2 ^ n )  x.  t ) )
142141sumeq2dv 13846 . . . . . 6  |-  ( A  e.  ( T  i^i  R )  ->  sum_ t  e.  ( ( `' A " NN )  i^i  J
) ( sum_ n  e.  (bits `  ( A `  t ) ) ( 2 ^ n )  x.  t )  = 
sum_ t  e.  ( ( `' A " NN )  i^i  J )
sum_ n  e.  (bits `  ( A `  t
) ) ( ( 2 ^ n )  x.  t ) )
143 bitsinv1 14495 . . . . . . . . 9  |-  ( ( A `  t )  e.  NN0  ->  sum_ n  e.  (bits `  ( A `  t ) ) ( 2 ^ n )  =  ( A `  t ) )
144143oveq1d 6323 . . . . . . . 8  |-  ( ( A `  t )  e.  NN0  ->  ( sum_ n  e.  (bits `  ( A `  t )
) ( 2 ^ n )  x.  t
)  =  ( ( A `  t )  x.  t ) )
145132, 144syl 17 . . . . . . 7  |-  ( ( A  e.  ( T  i^i  R )  /\  t  e.  ( ( `' A " NN )  i^i  J ) )  ->  ( sum_ n  e.  (bits `  ( A `  t ) ) ( 2 ^ n )  x.  t )  =  ( ( A `  t )  x.  t
) )
146145sumeq2dv 13846 . . . . . 6  |-  ( A  e.  ( T  i^i  R )  ->  sum_ t  e.  ( ( `' A " NN )  i^i  J
) ( sum_ n  e.  (bits `  ( A `  t ) ) ( 2 ^ n )  x.  t )  = 
sum_ t  e.  ( ( `' A " NN )  i^i  J ) ( ( A `  t )  x.  t
) )
147 vex 3034 . . . . . . . . . 10  |-  t  e. 
_V
148 vex 3034 . . . . . . . . . 10  |-  n  e. 
_V
149147, 148op2ndd 6823 . . . . . . . . 9  |-  ( w  =  <. t ,  n >.  ->  ( 2nd `  w
)  =  n )
150149oveq2d 6324 . . . . . . . 8  |-  ( w  =  <. t ,  n >.  ->  ( 2 ^ ( 2nd `  w
) )  =  ( 2 ^ n ) )
151147, 148op1std 6822 . . . . . . . 8  |-  ( w  =  <. t ,  n >.  ->  ( 1st `  w
)  =  t )
152150, 151oveq12d 6326 . . . . . . 7  |-  ( w  =  <. t ,  n >.  ->  ( ( 2 ^ ( 2nd `  w
) )  x.  ( 1st `  w ) )  =  ( ( 2 ^ n )  x.  t ) )
153 inss2 3644 . . . . . . . . . 10  |-  ( T  i^i  R )  C_  R
154153sseli 3414 . . . . . . . . 9  |-  ( A  e.  ( T  i^i  R )  ->  A  e.  R )
155 cnveq 5013 . . . . . . . . . . . 12  |-  ( f  =  A  ->  `' f  =  `' A
)
156155imaeq1d 5173 . . . . . . . . . . 11  |-  ( f  =  A  ->  ( `' f " NN )  =  ( `' A " NN ) )
157156eleq1d 2533 . . . . . . . . . 10  |-  ( f  =  A  ->  (
( `' f " NN )  e.  Fin  <->  ( `' A " NN )  e.  Fin ) )
158157, 9elab2g 3175 . . . . . . . . 9  |-  ( A  e.  ( T  i^i  R )  ->  ( A  e.  R  <->  ( `' A " NN )  e.  Fin ) )
159154, 158mpbid 215 . . . . . . . 8  |-  ( A  e.  ( T  i^i  R )  ->  ( `' A " NN )  e. 
Fin )
160 ssfi 7810 . . . . . . . 8  |-  ( ( ( `' A " NN )  e.  Fin  /\  ( ( `' A " NN )  i^i  J
)  C_  ( `' A " NN ) )  ->  ( ( `' A " NN )  i^i  J )  e. 
Fin )
161159, 129, 160sylancl 675 . . . . . . 7  |-  ( A  e.  ( T  i^i  R )  ->  ( ( `' A " NN )  i^i  J )  e. 
Fin )
162135adantrr 731 . . . . . . . 8  |-  ( ( A  e.  ( T  i^i  R )  /\  ( t  e.  ( ( `' A " NN )  i^i  J )  /\  n  e.  (bits `  ( A `  t
) ) ) )  ->  t  e.  CC )
163139, 162mulcld 9681 . . . . . . 7  |-  ( ( A  e.  ( T  i^i  R )  /\  ( t  e.  ( ( `' A " NN )  i^i  J )  /\  n  e.  (bits `  ( A `  t
) ) ) )  ->  ( ( 2 ^ n )  x.  t )  e.  CC )
164152, 161, 134, 163fsum2d 13909 . . . . . 6  |-  ( A  e.  ( T  i^i  R )  ->  sum_ t  e.  ( ( `' A " NN )  i^i  J
) sum_ n  e.  (bits `  ( A `  t
) ) ( ( 2 ^ n )  x.  t )  = 
sum_ w  e.  U_  t  e.  ( ( `' A " NN )  i^i  J
) ( { t }  X.  (bits `  ( A `  t ) ) ) ( ( 2 ^ ( 2nd `  w ) )  x.  ( 1st `  w
) ) )
165142, 146, 1643eqtr3d 2513 . . . . 5  |-  ( A  e.  ( T  i^i  R )  ->  sum_ t  e.  ( ( `' A " NN )  i^i  J
) ( ( A `
 t )  x.  t )  =  sum_ w  e.  U_  t  e.  ( ( `' A " NN )  i^i  J
) ( { t }  X.  (bits `  ( A `  t ) ) ) ( ( 2 ^ ( 2nd `  w ) )  x.  ( 1st `  w
) ) )
166 inss1 3643 . . . . . . . . 9  |-  ( T  i^i  R )  C_  T
167166sseli 3414 . . . . . . . 8  |-  ( A  e.  ( T  i^i  R )  ->  A  e.  T )
168156sseq1d 3445 . . . . . . . . . 10  |-  ( f  =  A  ->  (
( `' f " NN )  C_  J  <->  ( `' A " NN )  C_  J ) )
169168, 10elrab2 3186 . . . . . . . . 9  |-  ( A  e.  T  <->  ( A  e.  ( NN0  ^m  NN )  /\  ( `' A " NN )  C_  J
) )
170169simprbi 471 . . . . . . . 8  |-  ( A  e.  T  ->  ( `' A " NN ) 
C_  J )
171167, 170syl 17 . . . . . . 7  |-  ( A  e.  ( T  i^i  R )  ->  ( `' A " NN )  C_  J )
172 df-ss 3404 . . . . . . 7  |-  ( ( `' A " NN ) 
C_  J  <->  ( ( `' A " NN )  i^i  J )  =  ( `' A " NN ) )
173171, 172sylib 201 . . . . . 6  |-  ( A  e.  ( T  i^i  R )  ->  ( ( `' A " NN )  i^i  J )  =  ( `' A " NN ) )
174173sumeq1d 13844 . . . . 5  |-  ( A  e.  ( T  i^i  R )  ->  sum_ t  e.  ( ( `' A " NN )  i^i  J
) ( ( A `
 t )  x.  t )  =  sum_ t  e.  ( `' A " NN ) ( ( A `  t
)  x.  t ) )
175165, 174eqtr3d 2507 . . . 4  |-  ( A  e.  ( T  i^i  R )  ->  sum_ w  e. 
U_  t  e.  ( ( `' A " NN )  i^i  J ) ( { t }  X.  (bits `  ( A `  t )
) ) ( ( 2 ^ ( 2nd `  w ) )  x.  ( 1st `  w
) )  =  sum_ t  e.  ( `' A " NN ) ( ( A `  t
)  x.  t ) )
17627, 118, 1753eqtr2d 2511 . . 3  |-  ( A  e.  ( T  i^i  R )  ->  sum_ k  e.  ( `' ( G `
 A ) " NN ) ( ( ( G `  A ) `
 k )  x.  k )  =  sum_ t  e.  ( `' A " NN ) ( ( A `  t
)  x.  t ) )
177 fveq2 5879 . . . . 5  |-  ( k  =  t  ->  ( A `  k )  =  ( A `  t ) )
178 id 22 . . . . 5  |-  ( k  =  t  ->  k  =  t )
179177, 178oveq12d 6326 . . . 4  |-  ( k  =  t  ->  (
( A `  k
)  x.  k )  =  ( ( A `
 t )  x.  t ) )
180179cbvsumv 13839 . . 3  |-  sum_ k  e.  ( `' A " NN ) ( ( A `
 k )  x.  k )  =  sum_ t  e.  ( `' A " NN ) ( ( A `  t
)  x.  t )
181176, 180syl6eqr 2523 . 2  |-  ( A  e.  ( T  i^i  R )  ->  sum_ k  e.  ( `' ( G `
 A ) " NN ) ( ( ( G `  A ) `
 k )  x.  k )  =  sum_ k  e.  ( `' A " NN ) ( ( A `  k
)  x.  k ) )
182 0nn0 10908 . . . . . . . 8  |-  0  e.  NN0
183 1nn0 10909 . . . . . . . 8  |-  1  e.  NN0
184 prssi 4119 . . . . . . . 8  |-  ( ( 0  e.  NN0  /\  1  e.  NN0 )  ->  { 0 ,  1 }  C_  NN0 )
185182, 183, 184mp2an 686 . . . . . . 7  |-  { 0 ,  1 }  C_  NN0
186 fss 5749 . . . . . . 7  |-  ( ( ( G `  A
) : NN --> { 0 ,  1 }  /\  { 0 ,  1 } 
C_  NN0 )  ->  ( G `  A ) : NN --> NN0 )
187185, 186mpan2 685 . . . . . 6  |-  ( ( G `  A ) : NN --> { 0 ,  1 }  ->  ( G `  A ) : NN --> NN0 )
188 nn0ex 10899 . . . . . . . 8  |-  NN0  e.  _V
189 nnex 10637 . . . . . . . 8  |-  NN  e.  _V
190188, 189elmap 7518 . . . . . . 7  |-  ( ( G `  A )  e.  ( NN0  ^m  NN )  <->  ( G `  A ) : NN --> NN0 )
191190biimpri 211 . . . . . 6  |-  ( ( G `  A ) : NN --> NN0  ->  ( G `  A )  e.  ( NN0  ^m  NN ) )
19219, 187, 1913syl 18 . . . . 5  |-  ( ( G `  A )  e.  ( { 0 ,  1 }  ^m  NN )  ->  ( G `
 A )  e.  ( NN0  ^m  NN ) )
193192anim1i 578 . . . 4  |-  ( ( ( G `  A
)  e.  ( { 0 ,  1 }  ^m  NN )  /\  ( G `  A )  e.  R )  -> 
( ( G `  A )  e.  ( NN0  ^m  NN )  /\  ( G `  A )  e.  R
) )
194 elin 3608 . . . 4  |-  ( ( G `  A )  e.  ( ( NN0 
^m  NN )  i^i 
R )  <->  ( ( G `  A )  e.  ( NN0  ^m  NN )  /\  ( G `  A )  e.  R
) )
195193, 16, 1943imtr4i 274 . . 3  |-  ( ( G `  A )  e.  ( ( { 0 ,  1 }  ^m  NN )  i^i 
R )  ->  ( G `  A )  e.  ( ( NN0  ^m  NN )  i^i  R ) )
196 eulerpart.s . . . 4  |-  S  =  ( f  e.  ( ( NN0  ^m  NN )  i^i  R )  |->  sum_ k  e.  NN  (
( f `  k
)  x.  k ) )
1979, 196eulerpartlemsv2 29264 . . 3  |-  ( ( G `  A )  e.  ( ( NN0 
^m  NN )  i^i 
R )  ->  ( S `  ( G `  A ) )  = 
sum_ k  e.  ( `' ( G `  A ) " NN ) ( ( ( G `  A ) `
 k )  x.  k ) )
19815, 195, 1973syl 18 . 2  |-  ( A  e.  ( T  i^i  R )  ->  ( S `  ( G `  A
) )  =  sum_ k  e.  ( `' ( G `  A )
" NN ) ( ( ( G `  A ) `  k
)  x.  k ) )
199120, 154elind 3609 . . 3  |-  ( A  e.  ( T  i^i  R )  ->  A  e.  ( ( NN0  ^m  NN )  i^i  R ) )
2009, 196eulerpartlemsv2 29264 . . 3  |-  ( A  e.  ( ( NN0 
^m  NN )  i^i 
R )  ->  ( S `  A )  =  sum_ k  e.  ( `' A " NN ) ( ( A `  k )  x.  k
) )
201199, 200syl 17 . 2  |-  ( A  e.  ( T  i^i  R )  ->  ( S `  A )  =  sum_ k  e.  ( `' A " NN ) ( ( A `  k
)  x.  k ) )
202181, 198, 2013eqtr4d 2515 1  |-  ( A  e.  ( T  i^i  R )  ->  ( S `  ( G `  A
) )  =  ( S `  A ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    /\ wa 376    = wceq 1452    e. wcel 1904   {cab 2457   A.wral 2756   E.wrex 2757   {crab 2760   _Vcvv 3031    \ cdif 3387    i^i cin 3389    C_ wss 3390   (/)c0 3722   ifcif 3872   ~Pcpw 3942   {csn 3959   {cpr 3961   <.cop 3965   U_ciun 4269   class class class wbr 4395   {copab 4453    |-> cmpt 4454    X. cxp 4837   `'ccnv 4838   dom cdm 4839    |` cres 4841   "cima 4842    o. ccom 4843    Fn wfn 5584   -->wf 5585   -1-1-onto->wf1o 5588   ` cfv 5589  (class class class)co 6308    |-> cmpt2 6310   1stc1st 6810   2ndc2nd 6811   supp csupp 6933    ^m cmap 7490    ~~ cen 7584   Fincfn 7587   CCcc 9555   0cc0 9557   1c1 9558    x. cmul 9562    <_ cle 9694   NNcn 10631   2c2 10681   NN0cn0 10893   ^cexp 12310   sum_csu 13829    || cdvds 14382  bitscbits 14471  𝟭cind 28906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-inf2 8164  ax-ac2 8911  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634  ax-pre-sup 9635
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-fal 1458  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-disj 4367  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-se 4799  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-isom 5598  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-1st 6812  df-2nd 6813  df-supp 6934  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-2o 7201  df-oadd 7204  df-er 7381  df-map 7492  df-pm 7493  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-fsupp 7902  df-sup 7974  df-inf 7975  df-oi 8043  df-card 8391  df-acn 8394  df-ac 8565  df-cda 8616  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-div 10292  df-nn 10632  df-2 10690  df-3 10691  df-n0 10894  df-z 10962  df-uz 11183  df-rp 11326  df-fz 11811  df-fzo 11943  df-fl 12061  df-mod 12130  df-seq 12252  df-exp 12311  df-hash 12554  df-cj 13239  df-re 13240  df-im 13241  df-sqrt 13375  df-abs 13376  df-clim 13629  df-sum 13830  df-dvds 14383  df-bits 14474  df-ind 28907
This theorem is referenced by:  eulerpartlemn  29287
  Copyright terms: Public domain W3C validator