Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartlemb Structured version   Visualization version   Unicode version

Theorem eulerpartlemb 29274
Description: Lemma for eulerpart 29288. The set of all partitions of  N is finite. (Contributed by Mario Carneiro, 26-Jan-2015.)
Hypotheses
Ref Expression
eulerpart.p  |-  P  =  { f  e.  ( NN0  ^m  NN )  |  ( ( `' f " NN )  e.  Fin  /\  sum_ k  e.  NN  (
( f `  k
)  x.  k )  =  N ) }
eulerpart.o  |-  O  =  { g  e.  P  |  A. n  e.  ( `' g " NN )  -.  2  ||  n }
eulerpart.d  |-  D  =  { g  e.  P  |  A. n  e.  NN  ( g `  n
)  <_  1 }
eulerpart.j  |-  J  =  { z  e.  NN  |  -.  2  ||  z }
eulerpart.f  |-  F  =  ( x  e.  J ,  y  e.  NN0  |->  ( ( 2 ^ y )  x.  x
) )
eulerpart.h  |-  H  =  { r  e.  ( ( ~P NN0  i^i  Fin )  ^m  J )  |  ( r supp  (/) )  e. 
Fin }
eulerpart.m  |-  M  =  ( r  e.  H  |->  { <. x ,  y
>.  |  ( x  e.  J  /\  y  e.  ( r `  x
) ) } )
Assertion
Ref Expression
eulerpartlemb  |-  P  e. 
Fin
Distinct variable groups:    f, g,
k, x, y    f, N, g, x    P, g
Allowed substitution hints:    D( x, y, z, f, g, k, n, r)    P( x, y, z, f, k, n, r)    F( x, y, z, f, g, k, n, r)    H( x, y, z, f, g, k, n, r)    J( x, y, z, f, g, k, n, r)    M( x, y, z, f, g, k, n, r)    N( y, z, k, n, r)    O( x, y, z, f, g, k, n, r)

Proof of Theorem eulerpartlemb
StepHypRef Expression
1 fzfid 12224 . . . 4  |-  ( T. 
->  ( 1 ... N
)  e.  Fin )
2 fzfi 12223 . . . . . 6  |-  ( 0 ... N )  e. 
Fin
3 snfi 7668 . . . . . 6  |-  { 0 }  e.  Fin
42, 3keepel 3939 . . . . 5  |-  if ( x  e.  ( 1 ... N ) ,  ( 0 ... N
) ,  { 0 } )  e.  Fin
54a1i 11 . . . 4  |-  ( ( T.  /\  x  e.  NN )  ->  if ( x  e.  (
1 ... N ) ,  ( 0 ... N
) ,  { 0 } )  e.  Fin )
6 eldifn 3545 . . . . . 6  |-  ( x  e.  ( NN  \ 
( 1 ... N
) )  ->  -.  x  e.  ( 1 ... N ) )
76adantl 473 . . . . 5  |-  ( ( T.  /\  x  e.  ( NN  \  (
1 ... N ) ) )  ->  -.  x  e.  ( 1 ... N
) )
8 iffalse 3881 . . . . 5  |-  ( -.  x  e.  ( 1 ... N )  ->  if ( x  e.  ( 1 ... N ) ,  ( 0 ... N ) ,  {
0 } )  =  { 0 } )
9 eqimss 3470 . . . . 5  |-  ( if ( x  e.  ( 1 ... N ) ,  ( 0 ... N ) ,  {
0 } )  =  { 0 }  ->  if ( x  e.  ( 1 ... N ) ,  ( 0 ... N ) ,  {
0 } )  C_  { 0 } )
107, 8, 93syl 18 . . . 4  |-  ( ( T.  /\  x  e.  ( NN  \  (
1 ... N ) ) )  ->  if (
x  e.  ( 1 ... N ) ,  ( 0 ... N
) ,  { 0 } )  C_  { 0 } )
111, 5, 10ixpfi2 7890 . . 3  |-  ( T. 
->  X_ x  e.  NN  if ( x  e.  ( 1 ... N ) ,  ( 0 ... N ) ,  {
0 } )  e. 
Fin )
1211trud 1461 . 2  |-  X_ x  e.  NN  if ( x  e.  ( 1 ... N ) ,  ( 0 ... N ) ,  { 0 } )  e.  Fin
13 eulerpart.p . . . . 5  |-  P  =  { f  e.  ( NN0  ^m  NN )  |  ( ( `' f " NN )  e.  Fin  /\  sum_ k  e.  NN  (
( f `  k
)  x.  k )  =  N ) }
1413eulerpartleme 29269 . . . 4  |-  ( g  e.  P  <->  ( g : NN --> NN0  /\  ( `' g " NN )  e.  Fin  /\  sum_ k  e.  NN  (
( g `  k
)  x.  k )  =  N ) )
15 ffn 5739 . . . . . 6  |-  ( g : NN --> NN0  ->  g  Fn  NN )
16153ad2ant1 1051 . . . . 5  |-  ( ( g : NN --> NN0  /\  ( `' g " NN )  e.  Fin  /\  sum_ k  e.  NN  (
( g `  k
)  x.  k )  =  N )  -> 
g  Fn  NN )
17 ffvelrn 6035 . . . . . . . . . . . . 13  |-  ( ( g : NN --> NN0  /\  x  e.  NN )  ->  ( g `  x
)  e.  NN0 )
18173ad2antl1 1192 . . . . . . . . . . . 12  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin  /\  sum_ k  e.  NN  ( ( g `
 k )  x.  k )  =  N )  /\  x  e.  NN )  ->  (
g `  x )  e.  NN0 )
1918nn0red 10950 . . . . . . . . . . 11  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin  /\  sum_ k  e.  NN  ( ( g `
 k )  x.  k )  =  N )  /\  x  e.  NN )  ->  (
g `  x )  e.  RR )
20 nnre 10638 . . . . . . . . . . . . 13  |-  ( x  e.  NN  ->  x  e.  RR )
2120adantl 473 . . . . . . . . . . . 12  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin  /\  sum_ k  e.  NN  ( ( g `
 k )  x.  k )  =  N )  /\  x  e.  NN )  ->  x  e.  RR )
2219, 21remulcld 9689 . . . . . . . . . . 11  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin  /\  sum_ k  e.  NN  ( ( g `
 k )  x.  k )  =  N )  /\  x  e.  NN )  ->  (
( g `  x
)  x.  x )  e.  RR )
23 cnvimass 5194 . . . . . . . . . . . . . . . . . 18  |-  ( `' g " NN ) 
C_  dom  g
24 fdm 5745 . . . . . . . . . . . . . . . . . . 19  |-  ( g : NN --> NN0  ->  dom  g  =  NN )
2524adantr 472 . . . . . . . . . . . . . . . . . 18  |-  ( ( g : NN --> NN0  /\  ( `' g " NN )  e.  Fin )  ->  dom  g  =  NN )
2623, 25syl5sseq 3466 . . . . . . . . . . . . . . . . 17  |-  ( ( g : NN --> NN0  /\  ( `' g " NN )  e.  Fin )  ->  ( `' g " NN )  C_  NN )
2726sselda 3418 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin )  /\  k  e.  ( `' g " NN ) )  ->  k  e.  NN )
28 ffvelrn 6035 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( g : NN --> NN0  /\  k  e.  NN )  ->  ( g `  k
)  e.  NN0 )
2928adantlr 729 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin )  /\  k  e.  NN )  ->  (
g `  k )  e.  NN0 )
3027, 29syldan 478 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin )  /\  k  e.  ( `' g " NN ) )  ->  (
g `  k )  e.  NN0 )
3127nnnn0d 10949 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin )  /\  k  e.  ( `' g " NN ) )  ->  k  e.  NN0 )
3230, 31nn0mulcld 10954 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin )  /\  k  e.  ( `' g " NN ) )  ->  (
( g `  k
)  x.  k )  e.  NN0 )
3332nn0cnd 10951 . . . . . . . . . . . . . . . . 17  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin )  /\  k  e.  ( `' g " NN ) )  ->  (
( g `  k
)  x.  k )  e.  CC )
34 simpl 464 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( g : NN --> NN0  /\  ( `' g " NN )  e.  Fin )  ->  g : NN --> NN0 )
35 nnex 10637 . . . . . . . . . . . . . . . . . . . . . . 23  |-  NN  e.  _V
36 frnnn0supp 10947 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( NN  e.  _V  /\  g : NN --> NN0 )  ->  ( g supp  0 )  =  ( `' g
" NN ) )
3735, 36mpan 684 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( g : NN --> NN0  ->  ( g supp  0 )  =  ( `' g " NN ) )
3837adantr 472 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( g : NN --> NN0  /\  ( `' g " NN )  e.  Fin )  ->  ( g supp  0 )  =  ( `' g
" NN ) )
39 eqimss 3470 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( g supp  0 )  =  ( `' g " NN )  ->  ( g supp  0 )  C_  ( `' g " NN ) )
4038, 39syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( g : NN --> NN0  /\  ( `' g " NN )  e.  Fin )  ->  ( g supp  0 ) 
C_  ( `' g
" NN ) )
4135a1i 11 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( g : NN --> NN0  /\  ( `' g " NN )  e.  Fin )  ->  NN  e.  _V )
42 0nn0 10908 . . . . . . . . . . . . . . . . . . . . 21  |-  0  e.  NN0
4342a1i 11 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( g : NN --> NN0  /\  ( `' g " NN )  e.  Fin )  ->  0  e.  NN0 )
4434, 40, 41, 43suppssr 6965 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin )  /\  k  e.  ( NN  \  ( `' g " NN ) ) )  -> 
( g `  k
)  =  0 )
4544oveq1d 6323 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin )  /\  k  e.  ( NN  \  ( `' g " NN ) ) )  -> 
( ( g `  k )  x.  k
)  =  ( 0  x.  k ) )
46 eldifi 3544 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  e.  ( NN  \ 
( `' g " NN ) )  ->  k  e.  NN )
4746adantl 473 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin )  /\  k  e.  ( NN  \  ( `' g " NN ) ) )  -> 
k  e.  NN )
48 nncn 10639 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  NN  ->  k  e.  CC )
49 mul02 9829 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  CC  ->  (
0  x.  k )  =  0 )
5047, 48, 493syl 18 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin )  /\  k  e.  ( NN  \  ( `' g " NN ) ) )  -> 
( 0  x.  k
)  =  0 )
5145, 50eqtrd 2505 . . . . . . . . . . . . . . . . 17  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin )  /\  k  e.  ( NN  \  ( `' g " NN ) ) )  -> 
( ( g `  k )  x.  k
)  =  0 )
52 nnuz 11218 . . . . . . . . . . . . . . . . . . 19  |-  NN  =  ( ZZ>= `  1 )
5352eqimssi 3472 . . . . . . . . . . . . . . . . . 18  |-  NN  C_  ( ZZ>= `  1 )
5453a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( g : NN --> NN0  /\  ( `' g " NN )  e.  Fin )  ->  NN  C_  ( ZZ>= ` 
1 ) )
5526, 33, 51, 54sumss 13867 . . . . . . . . . . . . . . . 16  |-  ( ( g : NN --> NN0  /\  ( `' g " NN )  e.  Fin )  -> 
sum_ k  e.  ( `' g " NN ) ( ( g `
 k )  x.  k )  =  sum_ k  e.  NN  (
( g `  k
)  x.  k ) )
56 simpr 468 . . . . . . . . . . . . . . . . 17  |-  ( ( g : NN --> NN0  /\  ( `' g " NN )  e.  Fin )  ->  ( `' g " NN )  e.  Fin )
5756, 32fsumnn0cl 13879 . . . . . . . . . . . . . . . 16  |-  ( ( g : NN --> NN0  /\  ( `' g " NN )  e.  Fin )  -> 
sum_ k  e.  ( `' g " NN ) ( ( g `
 k )  x.  k )  e.  NN0 )
5855, 57eqeltrrd 2550 . . . . . . . . . . . . . . 15  |-  ( ( g : NN --> NN0  /\  ( `' g " NN )  e.  Fin )  -> 
sum_ k  e.  NN  ( ( g `  k )  x.  k
)  e.  NN0 )
59 eleq1 2537 . . . . . . . . . . . . . . 15  |-  ( sum_ k  e.  NN  (
( g `  k
)  x.  k )  =  N  ->  ( sum_ k  e.  NN  (
( g `  k
)  x.  k )  e.  NN0  <->  N  e.  NN0 ) )
6058, 59syl5ibcom 228 . . . . . . . . . . . . . 14  |-  ( ( g : NN --> NN0  /\  ( `' g " NN )  e.  Fin )  ->  ( sum_ k  e.  NN  ( ( g `  k )  x.  k
)  =  N  ->  N  e.  NN0 ) )
61603impia 1228 . . . . . . . . . . . . 13  |-  ( ( g : NN --> NN0  /\  ( `' g " NN )  e.  Fin  /\  sum_ k  e.  NN  (
( g `  k
)  x.  k )  =  N )  ->  N  e.  NN0 )
6261adantr 472 . . . . . . . . . . . 12  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin  /\  sum_ k  e.  NN  ( ( g `
 k )  x.  k )  =  N )  /\  x  e.  NN )  ->  N  e.  NN0 )
6362nn0red 10950 . . . . . . . . . . 11  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin  /\  sum_ k  e.  NN  ( ( g `
 k )  x.  k )  =  N )  /\  x  e.  NN )  ->  N  e.  RR )
6418nn0ge0d 10952 . . . . . . . . . . . 12  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin  /\  sum_ k  e.  NN  ( ( g `
 k )  x.  k )  =  N )  /\  x  e.  NN )  ->  0  <_  ( g `  x
) )
65 nnge1 10657 . . . . . . . . . . . . 13  |-  ( x  e.  NN  ->  1  <_  x )
6665adantl 473 . . . . . . . . . . . 12  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin  /\  sum_ k  e.  NN  ( ( g `
 k )  x.  k )  =  N )  /\  x  e.  NN )  ->  1  <_  x )
6719, 21, 64, 66lemulge11d 10566 . . . . . . . . . . 11  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin  /\  sum_ k  e.  NN  ( ( g `
 k )  x.  k )  =  N )  /\  x  e.  NN )  ->  (
g `  x )  <_  ( ( g `  x )  x.  x
) )
6856adantr 472 . . . . . . . . . . . . . . . . 17  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin )  /\  (
x  e.  NN  /\  x  e.  ( `' g " NN ) ) )  ->  ( `' g " NN )  e. 
Fin )
6932nn0red 10950 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin )  /\  k  e.  ( `' g " NN ) )  ->  (
( g `  k
)  x.  k )  e.  RR )
7069adantlr 729 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( g : NN --> NN0  /\  ( `' g " NN )  e.  Fin )  /\  ( x  e.  NN  /\  x  e.  ( `' g " NN ) ) )  /\  k  e.  ( `' g " NN ) )  ->  (
( g `  k
)  x.  k )  e.  RR )
7132nn0ge0d 10952 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin )  /\  k  e.  ( `' g " NN ) )  ->  0  <_  ( ( g `  k )  x.  k
) )
7271adantlr 729 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( g : NN --> NN0  /\  ( `' g " NN )  e.  Fin )  /\  ( x  e.  NN  /\  x  e.  ( `' g " NN ) ) )  /\  k  e.  ( `' g " NN ) )  ->  0  <_  ( ( g `  k )  x.  k
) )
73 fveq2 5879 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  x  ->  (
g `  k )  =  ( g `  x ) )
74 id 22 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  x  ->  k  =  x )
7573, 74oveq12d 6326 . . . . . . . . . . . . . . . . 17  |-  ( k  =  x  ->  (
( g `  k
)  x.  k )  =  ( ( g `
 x )  x.  x ) )
76 simprr 774 . . . . . . . . . . . . . . . . 17  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin )  /\  (
x  e.  NN  /\  x  e.  ( `' g " NN ) ) )  ->  x  e.  ( `' g " NN ) )
7768, 70, 72, 75, 76fsumge1 13934 . . . . . . . . . . . . . . . 16  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin )  /\  (
x  e.  NN  /\  x  e.  ( `' g " NN ) ) )  ->  ( (
g `  x )  x.  x )  <_  sum_ k  e.  ( `' g " NN ) ( ( g `
 k )  x.  k ) )
7877expr 626 . . . . . . . . . . . . . . 15  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin )  /\  x  e.  NN )  ->  (
x  e.  ( `' g " NN )  ->  ( ( g `
 x )  x.  x )  <_  sum_ k  e.  ( `' g " NN ) ( ( g `
 k )  x.  k ) ) )
79 eldif 3400 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  ( NN  \ 
( `' g " NN ) )  <->  ( x  e.  NN  /\  -.  x  e.  ( `' g " NN ) ) )
8051ralrimiva 2809 . . . . . . . . . . . . . . . . . . 19  |-  ( ( g : NN --> NN0  /\  ( `' g " NN )  e.  Fin )  ->  A. k  e.  ( NN  \  ( `' g " NN ) ) ( ( g `
 k )  x.  k )  =  0 )
8175eqeq1d 2473 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  =  x  ->  (
( ( g `  k )  x.  k
)  =  0  <->  (
( g `  x
)  x.  x )  =  0 ) )
8281rspccva 3135 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A. k  e.  ( NN  \  ( `' g " NN ) ) ( ( g `
 k )  x.  k )  =  0  /\  x  e.  ( NN  \  ( `' g " NN ) ) )  ->  (
( g `  x
)  x.  x )  =  0 )
8380, 82sylan 479 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin )  /\  x  e.  ( NN  \  ( `' g " NN ) ) )  -> 
( ( g `  x )  x.  x
)  =  0 )
8479, 83sylan2br 484 . . . . . . . . . . . . . . . . 17  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin )  /\  (
x  e.  NN  /\  -.  x  e.  ( `' g " NN ) ) )  -> 
( ( g `  x )  x.  x
)  =  0 )
8556adantr 472 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin )  /\  x  e.  NN )  ->  ( `' g " NN )  e.  Fin )
8632adantlr 729 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( g : NN --> NN0  /\  ( `' g " NN )  e.  Fin )  /\  x  e.  NN )  /\  k  e.  ( `' g " NN ) )  ->  (
( g `  k
)  x.  k )  e.  NN0 )
8786nn0red 10950 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( g : NN --> NN0  /\  ( `' g " NN )  e.  Fin )  /\  x  e.  NN )  /\  k  e.  ( `' g " NN ) )  ->  (
( g `  k
)  x.  k )  e.  RR )
8886nn0ge0d 10952 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( g : NN --> NN0  /\  ( `' g " NN )  e.  Fin )  /\  x  e.  NN )  /\  k  e.  ( `' g " NN ) )  ->  0  <_  ( ( g `  k )  x.  k
) )
8985, 87, 88fsumge0 13932 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin )  /\  x  e.  NN )  ->  0  <_ 
sum_ k  e.  ( `' g " NN ) ( ( g `
 k )  x.  k ) )
9089adantrr 731 . . . . . . . . . . . . . . . . 17  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin )  /\  (
x  e.  NN  /\  -.  x  e.  ( `' g " NN ) ) )  -> 
0  <_  sum_ k  e.  ( `' g " NN ) ( ( g `
 k )  x.  k ) )
9184, 90eqbrtrd 4416 . . . . . . . . . . . . . . . 16  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin )  /\  (
x  e.  NN  /\  -.  x  e.  ( `' g " NN ) ) )  -> 
( ( g `  x )  x.  x
)  <_  sum_ k  e.  ( `' g " NN ) ( ( g `
 k )  x.  k ) )
9291expr 626 . . . . . . . . . . . . . . 15  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin )  /\  x  e.  NN )  ->  ( -.  x  e.  ( `' g " NN )  ->  ( ( g `
 x )  x.  x )  <_  sum_ k  e.  ( `' g " NN ) ( ( g `
 k )  x.  k ) ) )
9378, 92pm2.61d 163 . . . . . . . . . . . . . 14  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin )  /\  x  e.  NN )  ->  (
( g `  x
)  x.  x )  <_  sum_ k  e.  ( `' g " NN ) ( ( g `
 k )  x.  k ) )
9455adantr 472 . . . . . . . . . . . . . 14  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin )  /\  x  e.  NN )  ->  sum_ k  e.  ( `' g " NN ) ( ( g `
 k )  x.  k )  =  sum_ k  e.  NN  (
( g `  k
)  x.  k ) )
9593, 94breqtrd 4420 . . . . . . . . . . . . 13  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin )  /\  x  e.  NN )  ->  (
( g `  x
)  x.  x )  <_  sum_ k  e.  NN  ( ( g `  k )  x.  k
) )
96953adantl3 1188 . . . . . . . . . . . 12  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin  /\  sum_ k  e.  NN  ( ( g `
 k )  x.  k )  =  N )  /\  x  e.  NN )  ->  (
( g `  x
)  x.  x )  <_  sum_ k  e.  NN  ( ( g `  k )  x.  k
) )
97 simpl3 1035 . . . . . . . . . . . 12  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin  /\  sum_ k  e.  NN  ( ( g `
 k )  x.  k )  =  N )  /\  x  e.  NN )  ->  sum_ k  e.  NN  ( ( g `
 k )  x.  k )  =  N )
9896, 97breqtrd 4420 . . . . . . . . . . 11  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin  /\  sum_ k  e.  NN  ( ( g `
 k )  x.  k )  =  N )  /\  x  e.  NN )  ->  (
( g `  x
)  x.  x )  <_  N )
9919, 22, 63, 67, 98letrd 9809 . . . . . . . . . 10  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin  /\  sum_ k  e.  NN  ( ( g `
 k )  x.  k )  =  N )  /\  x  e.  NN )  ->  (
g `  x )  <_  N )
100 nn0uz 11217 . . . . . . . . . . . 12  |-  NN0  =  ( ZZ>= `  0 )
10118, 100syl6eleq 2559 . . . . . . . . . . 11  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin  /\  sum_ k  e.  NN  ( ( g `
 k )  x.  k )  =  N )  /\  x  e.  NN )  ->  (
g `  x )  e.  ( ZZ>= `  0 )
)
10262nn0zd 11061 . . . . . . . . . . 11  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin  /\  sum_ k  e.  NN  ( ( g `
 k )  x.  k )  =  N )  /\  x  e.  NN )  ->  N  e.  ZZ )
103 elfz5 11818 . . . . . . . . . . 11  |-  ( ( ( g `  x
)  e.  ( ZZ>= ` 
0 )  /\  N  e.  ZZ )  ->  (
( g `  x
)  e.  ( 0 ... N )  <->  ( g `  x )  <_  N
) )
104101, 102, 103syl2anc 673 . . . . . . . . . 10  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin  /\  sum_ k  e.  NN  ( ( g `
 k )  x.  k )  =  N )  /\  x  e.  NN )  ->  (
( g `  x
)  e.  ( 0 ... N )  <->  ( g `  x )  <_  N
) )
10599, 104mpbird 240 . . . . . . . . 9  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin  /\  sum_ k  e.  NN  ( ( g `
 k )  x.  k )  =  N )  /\  x  e.  NN )  ->  (
g `  x )  e.  ( 0 ... N
) )
106105adantr 472 . . . . . . . 8  |-  ( ( ( ( g : NN --> NN0  /\  ( `' g " NN )  e.  Fin  /\  sum_ k  e.  NN  (
( g `  k
)  x.  k )  =  N )  /\  x  e.  NN )  /\  x  e.  (
1 ... N ) )  ->  ( g `  x )  e.  ( 0 ... N ) )
107 iftrue 3878 . . . . . . . . 9  |-  ( x  e.  ( 1 ... N )  ->  if ( x  e.  (
1 ... N ) ,  ( 0 ... N
) ,  { 0 } )  =  ( 0 ... N ) )
108107adantl 473 . . . . . . . 8  |-  ( ( ( ( g : NN --> NN0  /\  ( `' g " NN )  e.  Fin  /\  sum_ k  e.  NN  (
( g `  k
)  x.  k )  =  N )  /\  x  e.  NN )  /\  x  e.  (
1 ... N ) )  ->  if ( x  e.  ( 1 ... N ) ,  ( 0 ... N ) ,  { 0 } )  =  ( 0 ... N ) )
109106, 108eleqtrrd 2552 . . . . . . 7  |-  ( ( ( ( g : NN --> NN0  /\  ( `' g " NN )  e.  Fin  /\  sum_ k  e.  NN  (
( g `  k
)  x.  k )  =  N )  /\  x  e.  NN )  /\  x  e.  (
1 ... N ) )  ->  ( g `  x )  e.  if ( x  e.  (
1 ... N ) ,  ( 0 ... N
) ,  { 0 } ) )
110 nnge1 10657 . . . . . . . . . . . . . 14  |-  ( ( g `  x )  e.  NN  ->  1  <_  ( g `  x
) )
111 nnnn0 10900 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  NN  ->  x  e.  NN0 )
112111adantl 473 . . . . . . . . . . . . . . . . 17  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin  /\  sum_ k  e.  NN  ( ( g `
 k )  x.  k )  =  N )  /\  x  e.  NN )  ->  x  e.  NN0 )
113112nn0ge0d 10952 . . . . . . . . . . . . . . . 16  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin  /\  sum_ k  e.  NN  ( ( g `
 k )  x.  k )  =  N )  /\  x  e.  NN )  ->  0  <_  x )
114 lemulge12 10490 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x  e.  RR  /\  ( g `  x
)  e.  RR )  /\  ( 0  <_  x  /\  1  <_  (
g `  x )
) )  ->  x  <_  ( ( g `  x )  x.  x
) )
115114expr 626 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  e.  RR  /\  ( g `  x
)  e.  RR )  /\  0  <_  x
)  ->  ( 1  <_  ( g `  x )  ->  x  <_  ( ( g `  x )  x.  x
) ) )
11621, 19, 113, 115syl21anc 1291 . . . . . . . . . . . . . . 15  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin  /\  sum_ k  e.  NN  ( ( g `
 k )  x.  k )  =  N )  /\  x  e.  NN )  ->  (
1  <_  ( g `  x )  ->  x  <_  ( ( g `  x )  x.  x
) ) )
117 letr 9745 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR  /\  ( ( g `  x )  x.  x
)  e.  RR  /\  N  e.  RR )  ->  ( ( x  <_ 
( ( g `  x )  x.  x
)  /\  ( (
g `  x )  x.  x )  <_  N
)  ->  x  <_  N ) )
11821, 22, 63, 117syl3anc 1292 . . . . . . . . . . . . . . . 16  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin  /\  sum_ k  e.  NN  ( ( g `
 k )  x.  k )  =  N )  /\  x  e.  NN )  ->  (
( x  <_  (
( g `  x
)  x.  x )  /\  ( ( g `
 x )  x.  x )  <_  N
)  ->  x  <_  N ) )
11998, 118mpan2d 688 . . . . . . . . . . . . . . 15  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin  /\  sum_ k  e.  NN  ( ( g `
 k )  x.  k )  =  N )  /\  x  e.  NN )  ->  (
x  <_  ( (
g `  x )  x.  x )  ->  x  <_  N ) )
120116, 119syld 44 . . . . . . . . . . . . . 14  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin  /\  sum_ k  e.  NN  ( ( g `
 k )  x.  k )  =  N )  /\  x  e.  NN )  ->  (
1  <_  ( g `  x )  ->  x  <_  N ) )
121110, 120syl5 32 . . . . . . . . . . . . 13  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin  /\  sum_ k  e.  NN  ( ( g `
 k )  x.  k )  =  N )  /\  x  e.  NN )  ->  (
( g `  x
)  e.  NN  ->  x  <_  N ) )
122 simpr 468 . . . . . . . . . . . . . . 15  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin  /\  sum_ k  e.  NN  ( ( g `
 k )  x.  k )  =  N )  /\  x  e.  NN )  ->  x  e.  NN )
123122, 52syl6eleq 2559 . . . . . . . . . . . . . 14  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin  /\  sum_ k  e.  NN  ( ( g `
 k )  x.  k )  =  N )  /\  x  e.  NN )  ->  x  e.  ( ZZ>= `  1 )
)
124 elfz5 11818 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ( ZZ>= ` 
1 )  /\  N  e.  ZZ )  ->  (
x  e.  ( 1 ... N )  <->  x  <_  N ) )
125123, 102, 124syl2anc 673 . . . . . . . . . . . . 13  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin  /\  sum_ k  e.  NN  ( ( g `
 k )  x.  k )  =  N )  /\  x  e.  NN )  ->  (
x  e.  ( 1 ... N )  <->  x  <_  N ) )
126121, 125sylibrd 242 . . . . . . . . . . . 12  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin  /\  sum_ k  e.  NN  ( ( g `
 k )  x.  k )  =  N )  /\  x  e.  NN )  ->  (
( g `  x
)  e.  NN  ->  x  e.  ( 1 ... N ) ) )
127126con3d 140 . . . . . . . . . . 11  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin  /\  sum_ k  e.  NN  ( ( g `
 k )  x.  k )  =  N )  /\  x  e.  NN )  ->  ( -.  x  e.  (
1 ... N )  ->  -.  ( g `  x
)  e.  NN ) )
128 elnn0 10895 . . . . . . . . . . . . 13  |-  ( ( g `  x )  e.  NN0  <->  ( ( g `
 x )  e.  NN  \/  ( g `
 x )  =  0 ) )
12918, 128sylib 201 . . . . . . . . . . . 12  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin  /\  sum_ k  e.  NN  ( ( g `
 k )  x.  k )  =  N )  /\  x  e.  NN )  ->  (
( g `  x
)  e.  NN  \/  ( g `  x
)  =  0 ) )
130129ord 384 . . . . . . . . . . 11  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin  /\  sum_ k  e.  NN  ( ( g `
 k )  x.  k )  =  N )  /\  x  e.  NN )  ->  ( -.  ( g `  x
)  e.  NN  ->  ( g `  x )  =  0 ) )
131127, 130syld 44 . . . . . . . . . 10  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin  /\  sum_ k  e.  NN  ( ( g `
 k )  x.  k )  =  N )  /\  x  e.  NN )  ->  ( -.  x  e.  (
1 ... N )  -> 
( g `  x
)  =  0 ) )
132131imp 436 . . . . . . . . 9  |-  ( ( ( ( g : NN --> NN0  /\  ( `' g " NN )  e.  Fin  /\  sum_ k  e.  NN  (
( g `  k
)  x.  k )  =  N )  /\  x  e.  NN )  /\  -.  x  e.  ( 1 ... N ) )  ->  ( g `  x )  =  0 )
133 fvex 5889 . . . . . . . . . 10  |-  ( g `
 x )  e. 
_V
134133elsnc 3984 . . . . . . . . 9  |-  ( ( g `  x )  e.  { 0 }  <-> 
( g `  x
)  =  0 )
135132, 134sylibr 217 . . . . . . . 8  |-  ( ( ( ( g : NN --> NN0  /\  ( `' g " NN )  e.  Fin  /\  sum_ k  e.  NN  (
( g `  k
)  x.  k )  =  N )  /\  x  e.  NN )  /\  -.  x  e.  ( 1 ... N ) )  ->  ( g `  x )  e.  {
0 } )
1368adantl 473 . . . . . . . 8  |-  ( ( ( ( g : NN --> NN0  /\  ( `' g " NN )  e.  Fin  /\  sum_ k  e.  NN  (
( g `  k
)  x.  k )  =  N )  /\  x  e.  NN )  /\  -.  x  e.  ( 1 ... N ) )  ->  if (
x  e.  ( 1 ... N ) ,  ( 0 ... N
) ,  { 0 } )  =  {
0 } )
137135, 136eleqtrrd 2552 . . . . . . 7  |-  ( ( ( ( g : NN --> NN0  /\  ( `' g " NN )  e.  Fin  /\  sum_ k  e.  NN  (
( g `  k
)  x.  k )  =  N )  /\  x  e.  NN )  /\  -.  x  e.  ( 1 ... N ) )  ->  ( g `  x )  e.  if ( x  e.  (
1 ... N ) ,  ( 0 ... N
) ,  { 0 } ) )
138109, 137pm2.61dan 808 . . . . . 6  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin  /\  sum_ k  e.  NN  ( ( g `
 k )  x.  k )  =  N )  /\  x  e.  NN )  ->  (
g `  x )  e.  if ( x  e.  ( 1 ... N
) ,  ( 0 ... N ) ,  { 0 } ) )
139138ralrimiva 2809 . . . . 5  |-  ( ( g : NN --> NN0  /\  ( `' g " NN )  e.  Fin  /\  sum_ k  e.  NN  (
( g `  k
)  x.  k )  =  N )  ->  A. x  e.  NN  ( g `  x
)  e.  if ( x  e.  ( 1 ... N ) ,  ( 0 ... N
) ,  { 0 } ) )
140 vex 3034 . . . . . 6  |-  g  e. 
_V
141140elixp 7547 . . . . 5  |-  ( g  e.  X_ x  e.  NN  if ( x  e.  ( 1 ... N ) ,  ( 0 ... N ) ,  {
0 } )  <->  ( g  Fn  NN  /\  A. x  e.  NN  ( g `  x )  e.  if ( x  e.  (
1 ... N ) ,  ( 0 ... N
) ,  { 0 } ) ) )
14216, 139, 141sylanbrc 677 . . . 4  |-  ( ( g : NN --> NN0  /\  ( `' g " NN )  e.  Fin  /\  sum_ k  e.  NN  (
( g `  k
)  x.  k )  =  N )  -> 
g  e.  X_ x  e.  NN  if ( x  e.  ( 1 ... N ) ,  ( 0 ... N ) ,  { 0 } ) )
14314, 142sylbi 200 . . 3  |-  ( g  e.  P  ->  g  e.  X_ x  e.  NN  if ( x  e.  ( 1 ... N ) ,  ( 0 ... N ) ,  {
0 } ) )
144143ssriv 3422 . 2  |-  P  C_  X_ x  e.  NN  if ( x  e.  (
1 ... N ) ,  ( 0 ... N
) ,  { 0 } )
145 ssfi 7810 . 2  |-  ( (
X_ x  e.  NN  if ( x  e.  ( 1 ... N ) ,  ( 0 ... N ) ,  {
0 } )  e. 
Fin  /\  P  C_  X_ x  e.  NN  if ( x  e.  ( 1 ... N ) ,  ( 0 ... N ) ,  { 0 } ) )  ->  P  e.  Fin )
14612, 144, 145mp2an 686 1  |-  P  e. 
Fin
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    \/ wo 375    /\ wa 376    /\ w3a 1007    = wceq 1452   T. wtru 1453    e. wcel 1904   A.wral 2756   {crab 2760   _Vcvv 3031    \ cdif 3387    i^i cin 3389    C_ wss 3390   (/)c0 3722   ifcif 3872   ~Pcpw 3942   {csn 3959   class class class wbr 4395   {copab 4453    |-> cmpt 4454   `'ccnv 4838   dom cdm 4839   "cima 4842    Fn wfn 5584   -->wf 5585   ` cfv 5589  (class class class)co 6308    |-> cmpt2 6310   supp csupp 6933    ^m cmap 7490   X_cixp 7540   Fincfn 7587   CCcc 9555   RRcr 9556   0cc0 9557   1c1 9558    x. cmul 9562    <_ cle 9694   NNcn 10631   2c2 10681   NN0cn0 10893   ZZcz 10961   ZZ>=cuz 11182   ...cfz 11810   ^cexp 12310   sum_csu 13829    || cdvds 14382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-inf2 8164  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634  ax-pre-sup 9635
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-fal 1458  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-se 4799  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-isom 5598  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-1st 6812  df-2nd 6813  df-supp 6934  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-2o 7201  df-oadd 7204  df-er 7381  df-map 7492  df-pm 7493  df-ixp 7541  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-sup 7974  df-oi 8043  df-card 8391  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-div 10292  df-nn 10632  df-2 10690  df-3 10691  df-n0 10894  df-z 10962  df-uz 11183  df-rp 11326  df-ico 11666  df-fz 11811  df-fzo 11943  df-seq 12252  df-exp 12311  df-hash 12554  df-cj 13239  df-re 13240  df-im 13241  df-sqrt 13375  df-abs 13376  df-clim 13629  df-sum 13830
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator