Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartlemb Structured version   Unicode version

Theorem eulerpartlemb 27935
Description: Lemma for eulerpart 27949. The set of all partitions of  N is finite. (Contributed by Mario Carneiro, 26-Jan-2015.)
Hypotheses
Ref Expression
eulerpart.p  |-  P  =  { f  e.  ( NN0  ^m  NN )  |  ( ( `' f " NN )  e.  Fin  /\  sum_ k  e.  NN  (
( f `  k
)  x.  k )  =  N ) }
eulerpart.o  |-  O  =  { g  e.  P  |  A. n  e.  ( `' g " NN )  -.  2  ||  n }
eulerpart.d  |-  D  =  { g  e.  P  |  A. n  e.  NN  ( g `  n
)  <_  1 }
eulerpart.j  |-  J  =  { z  e.  NN  |  -.  2  ||  z }
eulerpart.f  |-  F  =  ( x  e.  J ,  y  e.  NN0  |->  ( ( 2 ^ y )  x.  x
) )
eulerpart.h  |-  H  =  { r  e.  ( ( ~P NN0  i^i  Fin )  ^m  J )  |  ( r supp  (/) )  e. 
Fin }
eulerpart.m  |-  M  =  ( r  e.  H  |->  { <. x ,  y
>.  |  ( x  e.  J  /\  y  e.  ( r `  x
) ) } )
Assertion
Ref Expression
eulerpartlemb  |-  P  e. 
Fin
Distinct variable groups:    f, g,
k, x, y    f, N, g, x    P, g
Allowed substitution hints:    D( x, y, z, f, g, k, n, r)    P( x, y, z, f, k, n, r)    F( x, y, z, f, g, k, n, r)    H( x, y, z, f, g, k, n, r)    J( x, y, z, f, g, k, n, r)    M( x, y, z, f, g, k, n, r)    N( y, z, k, n, r)    O( x, y, z, f, g, k, n, r)

Proof of Theorem eulerpartlemb
StepHypRef Expression
1 fzfid 12041 . . . 4  |-  ( T. 
->  ( 1 ... N
)  e.  Fin )
2 fzfi 12040 . . . . . 6  |-  ( 0 ... N )  e. 
Fin
3 snfi 7588 . . . . . 6  |-  { 0 }  e.  Fin
42, 3keepel 4002 . . . . 5  |-  if ( x  e.  ( 1 ... N ) ,  ( 0 ... N
) ,  { 0 } )  e.  Fin
54a1i 11 . . . 4  |-  ( ( T.  /\  x  e.  NN )  ->  if ( x  e.  (
1 ... N ) ,  ( 0 ... N
) ,  { 0 } )  e.  Fin )
6 eldifn 3622 . . . . . 6  |-  ( x  e.  ( NN  \ 
( 1 ... N
) )  ->  -.  x  e.  ( 1 ... N ) )
76adantl 466 . . . . 5  |-  ( ( T.  /\  x  e.  ( NN  \  (
1 ... N ) ) )  ->  -.  x  e.  ( 1 ... N
) )
8 iffalse 3943 . . . . 5  |-  ( -.  x  e.  ( 1 ... N )  ->  if ( x  e.  ( 1 ... N ) ,  ( 0 ... N ) ,  {
0 } )  =  { 0 } )
9 eqimss 3551 . . . . 5  |-  ( if ( x  e.  ( 1 ... N ) ,  ( 0 ... N ) ,  {
0 } )  =  { 0 }  ->  if ( x  e.  ( 1 ... N ) ,  ( 0 ... N ) ,  {
0 } )  C_  { 0 } )
107, 8, 93syl 20 . . . 4  |-  ( ( T.  /\  x  e.  ( NN  \  (
1 ... N ) ) )  ->  if (
x  e.  ( 1 ... N ) ,  ( 0 ... N
) ,  { 0 } )  C_  { 0 } )
111, 5, 10ixpfi2 7809 . . 3  |-  ( T. 
->  X_ x  e.  NN  if ( x  e.  ( 1 ... N ) ,  ( 0 ... N ) ,  {
0 } )  e. 
Fin )
1211trud 1383 . 2  |-  X_ x  e.  NN  if ( x  e.  ( 1 ... N ) ,  ( 0 ... N ) ,  { 0 } )  e.  Fin
13 eulerpart.p . . . . 5  |-  P  =  { f  e.  ( NN0  ^m  NN )  |  ( ( `' f " NN )  e.  Fin  /\  sum_ k  e.  NN  (
( f `  k
)  x.  k )  =  N ) }
1413eulerpartleme 27930 . . . 4  |-  ( g  e.  P  <->  ( g : NN --> NN0  /\  ( `' g " NN )  e.  Fin  /\  sum_ k  e.  NN  (
( g `  k
)  x.  k )  =  N ) )
15 ffn 5724 . . . . . 6  |-  ( g : NN --> NN0  ->  g  Fn  NN )
16153ad2ant1 1012 . . . . 5  |-  ( ( g : NN --> NN0  /\  ( `' g " NN )  e.  Fin  /\  sum_ k  e.  NN  (
( g `  k
)  x.  k )  =  N )  -> 
g  Fn  NN )
17 ffvelrn 6012 . . . . . . . . . . . . 13  |-  ( ( g : NN --> NN0  /\  x  e.  NN )  ->  ( g `  x
)  e.  NN0 )
18173ad2antl1 1153 . . . . . . . . . . . 12  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin  /\  sum_ k  e.  NN  ( ( g `
 k )  x.  k )  =  N )  /\  x  e.  NN )  ->  (
g `  x )  e.  NN0 )
1918nn0red 10844 . . . . . . . . . . 11  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin  /\  sum_ k  e.  NN  ( ( g `
 k )  x.  k )  =  N )  /\  x  e.  NN )  ->  (
g `  x )  e.  RR )
20 nnre 10534 . . . . . . . . . . . . 13  |-  ( x  e.  NN  ->  x  e.  RR )
2120adantl 466 . . . . . . . . . . . 12  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin  /\  sum_ k  e.  NN  ( ( g `
 k )  x.  k )  =  N )  /\  x  e.  NN )  ->  x  e.  RR )
2219, 21remulcld 9615 . . . . . . . . . . 11  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin  /\  sum_ k  e.  NN  ( ( g `
 k )  x.  k )  =  N )  /\  x  e.  NN )  ->  (
( g `  x
)  x.  x )  e.  RR )
23 cnvimass 5350 . . . . . . . . . . . . . . . . . 18  |-  ( `' g " NN ) 
C_  dom  g
24 fdm 5728 . . . . . . . . . . . . . . . . . . 19  |-  ( g : NN --> NN0  ->  dom  g  =  NN )
2524adantr 465 . . . . . . . . . . . . . . . . . 18  |-  ( ( g : NN --> NN0  /\  ( `' g " NN )  e.  Fin )  ->  dom  g  =  NN )
2623, 25syl5sseq 3547 . . . . . . . . . . . . . . . . 17  |-  ( ( g : NN --> NN0  /\  ( `' g " NN )  e.  Fin )  ->  ( `' g " NN )  C_  NN )
2726sselda 3499 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin )  /\  k  e.  ( `' g " NN ) )  ->  k  e.  NN )
28 ffvelrn 6012 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( g : NN --> NN0  /\  k  e.  NN )  ->  ( g `  k
)  e.  NN0 )
2928adantlr 714 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin )  /\  k  e.  NN )  ->  (
g `  k )  e.  NN0 )
3027, 29syldan 470 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin )  /\  k  e.  ( `' g " NN ) )  ->  (
g `  k )  e.  NN0 )
3127nnnn0d 10843 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin )  /\  k  e.  ( `' g " NN ) )  ->  k  e.  NN0 )
3230, 31nn0mulcld 10848 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin )  /\  k  e.  ( `' g " NN ) )  ->  (
( g `  k
)  x.  k )  e.  NN0 )
3332nn0cnd 10845 . . . . . . . . . . . . . . . . 17  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin )  /\  k  e.  ( `' g " NN ) )  ->  (
( g `  k
)  x.  k )  e.  CC )
34 simpl 457 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( g : NN --> NN0  /\  ( `' g " NN )  e.  Fin )  ->  g : NN --> NN0 )
35 nnex 10533 . . . . . . . . . . . . . . . . . . . . . . 23  |-  NN  e.  _V
36 frnnn0supp 10840 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( NN  e.  _V  /\  g : NN --> NN0 )  ->  ( g supp  0 )  =  ( `' g
" NN ) )
3735, 36mpan 670 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( g : NN --> NN0  ->  ( g supp  0 )  =  ( `' g " NN ) )
3837adantr 465 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( g : NN --> NN0  /\  ( `' g " NN )  e.  Fin )  ->  ( g supp  0 )  =  ( `' g
" NN ) )
39 eqimss 3551 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( g supp  0 )  =  ( `' g " NN )  ->  ( g supp  0 )  C_  ( `' g " NN ) )
4038, 39syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( g : NN --> NN0  /\  ( `' g " NN )  e.  Fin )  ->  ( g supp  0 ) 
C_  ( `' g
" NN ) )
4135a1i 11 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( g : NN --> NN0  /\  ( `' g " NN )  e.  Fin )  ->  NN  e.  _V )
42 0nn0 10801 . . . . . . . . . . . . . . . . . . . . 21  |-  0  e.  NN0
4342a1i 11 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( g : NN --> NN0  /\  ( `' g " NN )  e.  Fin )  ->  0  e.  NN0 )
4434, 40, 41, 43suppssr 6923 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin )  /\  k  e.  ( NN  \  ( `' g " NN ) ) )  -> 
( g `  k
)  =  0 )
4544oveq1d 6292 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin )  /\  k  e.  ( NN  \  ( `' g " NN ) ) )  -> 
( ( g `  k )  x.  k
)  =  ( 0  x.  k ) )
46 eldifi 3621 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  e.  ( NN  \ 
( `' g " NN ) )  ->  k  e.  NN )
4746adantl 466 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin )  /\  k  e.  ( NN  \  ( `' g " NN ) ) )  -> 
k  e.  NN )
48 nncn 10535 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  NN  ->  k  e.  CC )
49 mul02 9748 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  CC  ->  (
0  x.  k )  =  0 )
5047, 48, 493syl 20 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin )  /\  k  e.  ( NN  \  ( `' g " NN ) ) )  -> 
( 0  x.  k
)  =  0 )
5145, 50eqtrd 2503 . . . . . . . . . . . . . . . . 17  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin )  /\  k  e.  ( NN  \  ( `' g " NN ) ) )  -> 
( ( g `  k )  x.  k
)  =  0 )
52 nnuz 11108 . . . . . . . . . . . . . . . . . . 19  |-  NN  =  ( ZZ>= `  1 )
5352eqimssi 3553 . . . . . . . . . . . . . . . . . 18  |-  NN  C_  ( ZZ>= `  1 )
5453a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( g : NN --> NN0  /\  ( `' g " NN )  e.  Fin )  ->  NN  C_  ( ZZ>= ` 
1 ) )
5526, 33, 51, 54sumss 13497 . . . . . . . . . . . . . . . 16  |-  ( ( g : NN --> NN0  /\  ( `' g " NN )  e.  Fin )  -> 
sum_ k  e.  ( `' g " NN ) ( ( g `
 k )  x.  k )  =  sum_ k  e.  NN  (
( g `  k
)  x.  k ) )
56 simpr 461 . . . . . . . . . . . . . . . . 17  |-  ( ( g : NN --> NN0  /\  ( `' g " NN )  e.  Fin )  ->  ( `' g " NN )  e.  Fin )
5756, 32fsumnn0cl 13509 . . . . . . . . . . . . . . . 16  |-  ( ( g : NN --> NN0  /\  ( `' g " NN )  e.  Fin )  -> 
sum_ k  e.  ( `' g " NN ) ( ( g `
 k )  x.  k )  e.  NN0 )
5855, 57eqeltrrd 2551 . . . . . . . . . . . . . . 15  |-  ( ( g : NN --> NN0  /\  ( `' g " NN )  e.  Fin )  -> 
sum_ k  e.  NN  ( ( g `  k )  x.  k
)  e.  NN0 )
59 eleq1 2534 . . . . . . . . . . . . . . 15  |-  ( sum_ k  e.  NN  (
( g `  k
)  x.  k )  =  N  ->  ( sum_ k  e.  NN  (
( g `  k
)  x.  k )  e.  NN0  <->  N  e.  NN0 ) )
6058, 59syl5ibcom 220 . . . . . . . . . . . . . 14  |-  ( ( g : NN --> NN0  /\  ( `' g " NN )  e.  Fin )  ->  ( sum_ k  e.  NN  ( ( g `  k )  x.  k
)  =  N  ->  N  e.  NN0 ) )
61603impia 1188 . . . . . . . . . . . . 13  |-  ( ( g : NN --> NN0  /\  ( `' g " NN )  e.  Fin  /\  sum_ k  e.  NN  (
( g `  k
)  x.  k )  =  N )  ->  N  e.  NN0 )
6261adantr 465 . . . . . . . . . . . 12  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin  /\  sum_ k  e.  NN  ( ( g `
 k )  x.  k )  =  N )  /\  x  e.  NN )  ->  N  e.  NN0 )
6362nn0red 10844 . . . . . . . . . . 11  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin  /\  sum_ k  e.  NN  ( ( g `
 k )  x.  k )  =  N )  /\  x  e.  NN )  ->  N  e.  RR )
6418nn0ge0d 10846 . . . . . . . . . . . 12  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin  /\  sum_ k  e.  NN  ( ( g `
 k )  x.  k )  =  N )  /\  x  e.  NN )  ->  0  <_  ( g `  x
) )
65 nnge1 10553 . . . . . . . . . . . . 13  |-  ( x  e.  NN  ->  1  <_  x )
6665adantl 466 . . . . . . . . . . . 12  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin  /\  sum_ k  e.  NN  ( ( g `
 k )  x.  k )  =  N )  /\  x  e.  NN )  ->  1  <_  x )
6719, 21, 64, 66lemulge11d 10474 . . . . . . . . . . 11  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin  /\  sum_ k  e.  NN  ( ( g `
 k )  x.  k )  =  N )  /\  x  e.  NN )  ->  (
g `  x )  <_  ( ( g `  x )  x.  x
) )
6856adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin )  /\  (
x  e.  NN  /\  x  e.  ( `' g " NN ) ) )  ->  ( `' g " NN )  e. 
Fin )
6932nn0red 10844 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin )  /\  k  e.  ( `' g " NN ) )  ->  (
( g `  k
)  x.  k )  e.  RR )
7069adantlr 714 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( g : NN --> NN0  /\  ( `' g " NN )  e.  Fin )  /\  ( x  e.  NN  /\  x  e.  ( `' g " NN ) ) )  /\  k  e.  ( `' g " NN ) )  ->  (
( g `  k
)  x.  k )  e.  RR )
7132nn0ge0d 10846 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin )  /\  k  e.  ( `' g " NN ) )  ->  0  <_  ( ( g `  k )  x.  k
) )
7271adantlr 714 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( g : NN --> NN0  /\  ( `' g " NN )  e.  Fin )  /\  ( x  e.  NN  /\  x  e.  ( `' g " NN ) ) )  /\  k  e.  ( `' g " NN ) )  ->  0  <_  ( ( g `  k )  x.  k
) )
73 fveq2 5859 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  x  ->  (
g `  k )  =  ( g `  x ) )
74 id 22 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  x  ->  k  =  x )
7573, 74oveq12d 6295 . . . . . . . . . . . . . . . . 17  |-  ( k  =  x  ->  (
( g `  k
)  x.  k )  =  ( ( g `
 x )  x.  x ) )
76 simprr 756 . . . . . . . . . . . . . . . . 17  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin )  /\  (
x  e.  NN  /\  x  e.  ( `' g " NN ) ) )  ->  x  e.  ( `' g " NN ) )
7768, 70, 72, 75, 76fsumge1 13562 . . . . . . . . . . . . . . . 16  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin )  /\  (
x  e.  NN  /\  x  e.  ( `' g " NN ) ) )  ->  ( (
g `  x )  x.  x )  <_  sum_ k  e.  ( `' g " NN ) ( ( g `
 k )  x.  k ) )
7877expr 615 . . . . . . . . . . . . . . 15  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin )  /\  x  e.  NN )  ->  (
x  e.  ( `' g " NN )  ->  ( ( g `
 x )  x.  x )  <_  sum_ k  e.  ( `' g " NN ) ( ( g `
 k )  x.  k ) ) )
79 eldif 3481 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  ( NN  \ 
( `' g " NN ) )  <->  ( x  e.  NN  /\  -.  x  e.  ( `' g " NN ) ) )
8051ralrimiva 2873 . . . . . . . . . . . . . . . . . . 19  |-  ( ( g : NN --> NN0  /\  ( `' g " NN )  e.  Fin )  ->  A. k  e.  ( NN  \  ( `' g " NN ) ) ( ( g `
 k )  x.  k )  =  0 )
8175eqeq1d 2464 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  =  x  ->  (
( ( g `  k )  x.  k
)  =  0  <->  (
( g `  x
)  x.  x )  =  0 ) )
8281rspccva 3208 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A. k  e.  ( NN  \  ( `' g " NN ) ) ( ( g `
 k )  x.  k )  =  0  /\  x  e.  ( NN  \  ( `' g " NN ) ) )  ->  (
( g `  x
)  x.  x )  =  0 )
8380, 82sylan 471 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin )  /\  x  e.  ( NN  \  ( `' g " NN ) ) )  -> 
( ( g `  x )  x.  x
)  =  0 )
8479, 83sylan2br 476 . . . . . . . . . . . . . . . . 17  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin )  /\  (
x  e.  NN  /\  -.  x  e.  ( `' g " NN ) ) )  -> 
( ( g `  x )  x.  x
)  =  0 )
8556adantr 465 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin )  /\  x  e.  NN )  ->  ( `' g " NN )  e.  Fin )
8632adantlr 714 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( g : NN --> NN0  /\  ( `' g " NN )  e.  Fin )  /\  x  e.  NN )  /\  k  e.  ( `' g " NN ) )  ->  (
( g `  k
)  x.  k )  e.  NN0 )
8786nn0red 10844 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( g : NN --> NN0  /\  ( `' g " NN )  e.  Fin )  /\  x  e.  NN )  /\  k  e.  ( `' g " NN ) )  ->  (
( g `  k
)  x.  k )  e.  RR )
8886nn0ge0d 10846 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( g : NN --> NN0  /\  ( `' g " NN )  e.  Fin )  /\  x  e.  NN )  /\  k  e.  ( `' g " NN ) )  ->  0  <_  ( ( g `  k )  x.  k
) )
8985, 87, 88fsumge0 13560 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin )  /\  x  e.  NN )  ->  0  <_ 
sum_ k  e.  ( `' g " NN ) ( ( g `
 k )  x.  k ) )
9089adantrr 716 . . . . . . . . . . . . . . . . 17  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin )  /\  (
x  e.  NN  /\  -.  x  e.  ( `' g " NN ) ) )  -> 
0  <_  sum_ k  e.  ( `' g " NN ) ( ( g `
 k )  x.  k ) )
9184, 90eqbrtrd 4462 . . . . . . . . . . . . . . . 16  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin )  /\  (
x  e.  NN  /\  -.  x  e.  ( `' g " NN ) ) )  -> 
( ( g `  x )  x.  x
)  <_  sum_ k  e.  ( `' g " NN ) ( ( g `
 k )  x.  k ) )
9291expr 615 . . . . . . . . . . . . . . 15  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin )  /\  x  e.  NN )  ->  ( -.  x  e.  ( `' g " NN )  ->  ( ( g `
 x )  x.  x )  <_  sum_ k  e.  ( `' g " NN ) ( ( g `
 k )  x.  k ) ) )
9378, 92pm2.61d 158 . . . . . . . . . . . . . 14  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin )  /\  x  e.  NN )  ->  (
( g `  x
)  x.  x )  <_  sum_ k  e.  ( `' g " NN ) ( ( g `
 k )  x.  k ) )
9455adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin )  /\  x  e.  NN )  ->  sum_ k  e.  ( `' g " NN ) ( ( g `
 k )  x.  k )  =  sum_ k  e.  NN  (
( g `  k
)  x.  k ) )
9593, 94breqtrd 4466 . . . . . . . . . . . . 13  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin )  /\  x  e.  NN )  ->  (
( g `  x
)  x.  x )  <_  sum_ k  e.  NN  ( ( g `  k )  x.  k
) )
96953adantl3 1149 . . . . . . . . . . . 12  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin  /\  sum_ k  e.  NN  ( ( g `
 k )  x.  k )  =  N )  /\  x  e.  NN )  ->  (
( g `  x
)  x.  x )  <_  sum_ k  e.  NN  ( ( g `  k )  x.  k
) )
97 simpl3 996 . . . . . . . . . . . 12  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin  /\  sum_ k  e.  NN  ( ( g `
 k )  x.  k )  =  N )  /\  x  e.  NN )  ->  sum_ k  e.  NN  ( ( g `
 k )  x.  k )  =  N )
9896, 97breqtrd 4466 . . . . . . . . . . 11  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin  /\  sum_ k  e.  NN  ( ( g `
 k )  x.  k )  =  N )  /\  x  e.  NN )  ->  (
( g `  x
)  x.  x )  <_  N )
9919, 22, 63, 67, 98letrd 9729 . . . . . . . . . 10  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin  /\  sum_ k  e.  NN  ( ( g `
 k )  x.  k )  =  N )  /\  x  e.  NN )  ->  (
g `  x )  <_  N )
100 nn0uz 11107 . . . . . . . . . . . 12  |-  NN0  =  ( ZZ>= `  0 )
10118, 100syl6eleq 2560 . . . . . . . . . . 11  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin  /\  sum_ k  e.  NN  ( ( g `
 k )  x.  k )  =  N )  /\  x  e.  NN )  ->  (
g `  x )  e.  ( ZZ>= `  0 )
)
10262nn0zd 10955 . . . . . . . . . . 11  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin  /\  sum_ k  e.  NN  ( ( g `
 k )  x.  k )  =  N )  /\  x  e.  NN )  ->  N  e.  ZZ )
103 elfz5 11671 . . . . . . . . . . 11  |-  ( ( ( g `  x
)  e.  ( ZZ>= ` 
0 )  /\  N  e.  ZZ )  ->  (
( g `  x
)  e.  ( 0 ... N )  <->  ( g `  x )  <_  N
) )
104101, 102, 103syl2anc 661 . . . . . . . . . 10  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin  /\  sum_ k  e.  NN  ( ( g `
 k )  x.  k )  =  N )  /\  x  e.  NN )  ->  (
( g `  x
)  e.  ( 0 ... N )  <->  ( g `  x )  <_  N
) )
10599, 104mpbird 232 . . . . . . . . 9  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin  /\  sum_ k  e.  NN  ( ( g `
 k )  x.  k )  =  N )  /\  x  e.  NN )  ->  (
g `  x )  e.  ( 0 ... N
) )
106105adantr 465 . . . . . . . 8  |-  ( ( ( ( g : NN --> NN0  /\  ( `' g " NN )  e.  Fin  /\  sum_ k  e.  NN  (
( g `  k
)  x.  k )  =  N )  /\  x  e.  NN )  /\  x  e.  (
1 ... N ) )  ->  ( g `  x )  e.  ( 0 ... N ) )
107 iftrue 3940 . . . . . . . . 9  |-  ( x  e.  ( 1 ... N )  ->  if ( x  e.  (
1 ... N ) ,  ( 0 ... N
) ,  { 0 } )  =  ( 0 ... N ) )
108107adantl 466 . . . . . . . 8  |-  ( ( ( ( g : NN --> NN0  /\  ( `' g " NN )  e.  Fin  /\  sum_ k  e.  NN  (
( g `  k
)  x.  k )  =  N )  /\  x  e.  NN )  /\  x  e.  (
1 ... N ) )  ->  if ( x  e.  ( 1 ... N ) ,  ( 0 ... N ) ,  { 0 } )  =  ( 0 ... N ) )
109106, 108eleqtrrd 2553 . . . . . . 7  |-  ( ( ( ( g : NN --> NN0  /\  ( `' g " NN )  e.  Fin  /\  sum_ k  e.  NN  (
( g `  k
)  x.  k )  =  N )  /\  x  e.  NN )  /\  x  e.  (
1 ... N ) )  ->  ( g `  x )  e.  if ( x  e.  (
1 ... N ) ,  ( 0 ... N
) ,  { 0 } ) )
110 nnge1 10553 . . . . . . . . . . . . . 14  |-  ( ( g `  x )  e.  NN  ->  1  <_  ( g `  x
) )
111 nnnn0 10793 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  NN  ->  x  e.  NN0 )
112111adantl 466 . . . . . . . . . . . . . . . . 17  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin  /\  sum_ k  e.  NN  ( ( g `
 k )  x.  k )  =  N )  /\  x  e.  NN )  ->  x  e.  NN0 )
113112nn0ge0d 10846 . . . . . . . . . . . . . . . 16  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin  /\  sum_ k  e.  NN  ( ( g `
 k )  x.  k )  =  N )  /\  x  e.  NN )  ->  0  <_  x )
114 lemulge12 10396 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x  e.  RR  /\  ( g `  x
)  e.  RR )  /\  ( 0  <_  x  /\  1  <_  (
g `  x )
) )  ->  x  <_  ( ( g `  x )  x.  x
) )
115114expr 615 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  e.  RR  /\  ( g `  x
)  e.  RR )  /\  0  <_  x
)  ->  ( 1  <_  ( g `  x )  ->  x  <_  ( ( g `  x )  x.  x
) ) )
11621, 19, 113, 115syl21anc 1222 . . . . . . . . . . . . . . 15  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin  /\  sum_ k  e.  NN  ( ( g `
 k )  x.  k )  =  N )  /\  x  e.  NN )  ->  (
1  <_  ( g `  x )  ->  x  <_  ( ( g `  x )  x.  x
) ) )
117 letr 9669 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR  /\  ( ( g `  x )  x.  x
)  e.  RR  /\  N  e.  RR )  ->  ( ( x  <_ 
( ( g `  x )  x.  x
)  /\  ( (
g `  x )  x.  x )  <_  N
)  ->  x  <_  N ) )
11821, 22, 63, 117syl3anc 1223 . . . . . . . . . . . . . . . 16  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin  /\  sum_ k  e.  NN  ( ( g `
 k )  x.  k )  =  N )  /\  x  e.  NN )  ->  (
( x  <_  (
( g `  x
)  x.  x )  /\  ( ( g `
 x )  x.  x )  <_  N
)  ->  x  <_  N ) )
11998, 118mpan2d 674 . . . . . . . . . . . . . . 15  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin  /\  sum_ k  e.  NN  ( ( g `
 k )  x.  k )  =  N )  /\  x  e.  NN )  ->  (
x  <_  ( (
g `  x )  x.  x )  ->  x  <_  N ) )
120116, 119syld 44 . . . . . . . . . . . . . 14  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin  /\  sum_ k  e.  NN  ( ( g `
 k )  x.  k )  =  N )  /\  x  e.  NN )  ->  (
1  <_  ( g `  x )  ->  x  <_  N ) )
121110, 120syl5 32 . . . . . . . . . . . . 13  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin  /\  sum_ k  e.  NN  ( ( g `
 k )  x.  k )  =  N )  /\  x  e.  NN )  ->  (
( g `  x
)  e.  NN  ->  x  <_  N ) )
122 simpr 461 . . . . . . . . . . . . . . 15  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin  /\  sum_ k  e.  NN  ( ( g `
 k )  x.  k )  =  N )  /\  x  e.  NN )  ->  x  e.  NN )
123122, 52syl6eleq 2560 . . . . . . . . . . . . . 14  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin  /\  sum_ k  e.  NN  ( ( g `
 k )  x.  k )  =  N )  /\  x  e.  NN )  ->  x  e.  ( ZZ>= `  1 )
)
124 elfz5 11671 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ( ZZ>= ` 
1 )  /\  N  e.  ZZ )  ->  (
x  e.  ( 1 ... N )  <->  x  <_  N ) )
125123, 102, 124syl2anc 661 . . . . . . . . . . . . 13  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin  /\  sum_ k  e.  NN  ( ( g `
 k )  x.  k )  =  N )  /\  x  e.  NN )  ->  (
x  e.  ( 1 ... N )  <->  x  <_  N ) )
126121, 125sylibrd 234 . . . . . . . . . . . 12  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin  /\  sum_ k  e.  NN  ( ( g `
 k )  x.  k )  =  N )  /\  x  e.  NN )  ->  (
( g `  x
)  e.  NN  ->  x  e.  ( 1 ... N ) ) )
127126con3d 133 . . . . . . . . . . 11  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin  /\  sum_ k  e.  NN  ( ( g `
 k )  x.  k )  =  N )  /\  x  e.  NN )  ->  ( -.  x  e.  (
1 ... N )  ->  -.  ( g `  x
)  e.  NN ) )
128 elnn0 10788 . . . . . . . . . . . . 13  |-  ( ( g `  x )  e.  NN0  <->  ( ( g `
 x )  e.  NN  \/  ( g `
 x )  =  0 ) )
12918, 128sylib 196 . . . . . . . . . . . 12  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin  /\  sum_ k  e.  NN  ( ( g `
 k )  x.  k )  =  N )  /\  x  e.  NN )  ->  (
( g `  x
)  e.  NN  \/  ( g `  x
)  =  0 ) )
130129ord 377 . . . . . . . . . . 11  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin  /\  sum_ k  e.  NN  ( ( g `
 k )  x.  k )  =  N )  /\  x  e.  NN )  ->  ( -.  ( g `  x
)  e.  NN  ->  ( g `  x )  =  0 ) )
131127, 130syld 44 . . . . . . . . . 10  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin  /\  sum_ k  e.  NN  ( ( g `
 k )  x.  k )  =  N )  /\  x  e.  NN )  ->  ( -.  x  e.  (
1 ... N )  -> 
( g `  x
)  =  0 ) )
132131imp 429 . . . . . . . . 9  |-  ( ( ( ( g : NN --> NN0  /\  ( `' g " NN )  e.  Fin  /\  sum_ k  e.  NN  (
( g `  k
)  x.  k )  =  N )  /\  x  e.  NN )  /\  -.  x  e.  ( 1 ... N ) )  ->  ( g `  x )  =  0 )
133 fvex 5869 . . . . . . . . . 10  |-  ( g `
 x )  e. 
_V
134133elsnc 4046 . . . . . . . . 9  |-  ( ( g `  x )  e.  { 0 }  <-> 
( g `  x
)  =  0 )
135132, 134sylibr 212 . . . . . . . 8  |-  ( ( ( ( g : NN --> NN0  /\  ( `' g " NN )  e.  Fin  /\  sum_ k  e.  NN  (
( g `  k
)  x.  k )  =  N )  /\  x  e.  NN )  /\  -.  x  e.  ( 1 ... N ) )  ->  ( g `  x )  e.  {
0 } )
1368adantl 466 . . . . . . . 8  |-  ( ( ( ( g : NN --> NN0  /\  ( `' g " NN )  e.  Fin  /\  sum_ k  e.  NN  (
( g `  k
)  x.  k )  =  N )  /\  x  e.  NN )  /\  -.  x  e.  ( 1 ... N ) )  ->  if (
x  e.  ( 1 ... N ) ,  ( 0 ... N
) ,  { 0 } )  =  {
0 } )
137135, 136eleqtrrd 2553 . . . . . . 7  |-  ( ( ( ( g : NN --> NN0  /\  ( `' g " NN )  e.  Fin  /\  sum_ k  e.  NN  (
( g `  k
)  x.  k )  =  N )  /\  x  e.  NN )  /\  -.  x  e.  ( 1 ... N ) )  ->  ( g `  x )  e.  if ( x  e.  (
1 ... N ) ,  ( 0 ... N
) ,  { 0 } ) )
138109, 137pm2.61dan 789 . . . . . 6  |-  ( ( ( g : NN --> NN0  /\  ( `' g
" NN )  e. 
Fin  /\  sum_ k  e.  NN  ( ( g `
 k )  x.  k )  =  N )  /\  x  e.  NN )  ->  (
g `  x )  e.  if ( x  e.  ( 1 ... N
) ,  ( 0 ... N ) ,  { 0 } ) )
139138ralrimiva 2873 . . . . 5  |-  ( ( g : NN --> NN0  /\  ( `' g " NN )  e.  Fin  /\  sum_ k  e.  NN  (
( g `  k
)  x.  k )  =  N )  ->  A. x  e.  NN  ( g `  x
)  e.  if ( x  e.  ( 1 ... N ) ,  ( 0 ... N
) ,  { 0 } ) )
140 vex 3111 . . . . . 6  |-  g  e. 
_V
141140elixp 7468 . . . . 5  |-  ( g  e.  X_ x  e.  NN  if ( x  e.  ( 1 ... N ) ,  ( 0 ... N ) ,  {
0 } )  <->  ( g  Fn  NN  /\  A. x  e.  NN  ( g `  x )  e.  if ( x  e.  (
1 ... N ) ,  ( 0 ... N
) ,  { 0 } ) ) )
14216, 139, 141sylanbrc 664 . . . 4  |-  ( ( g : NN --> NN0  /\  ( `' g " NN )  e.  Fin  /\  sum_ k  e.  NN  (
( g `  k
)  x.  k )  =  N )  -> 
g  e.  X_ x  e.  NN  if ( x  e.  ( 1 ... N ) ,  ( 0 ... N ) ,  { 0 } ) )
14314, 142sylbi 195 . . 3  |-  ( g  e.  P  ->  g  e.  X_ x  e.  NN  if ( x  e.  ( 1 ... N ) ,  ( 0 ... N ) ,  {
0 } ) )
144143ssriv 3503 . 2  |-  P  C_  X_ x  e.  NN  if ( x  e.  (
1 ... N ) ,  ( 0 ... N
) ,  { 0 } )
145 ssfi 7732 . 2  |-  ( (
X_ x  e.  NN  if ( x  e.  ( 1 ... N ) ,  ( 0 ... N ) ,  {
0 } )  e. 
Fin  /\  P  C_  X_ x  e.  NN  if ( x  e.  ( 1 ... N ) ,  ( 0 ... N ) ,  { 0 } ) )  ->  P  e.  Fin )
14612, 144, 145mp2an 672 1  |-  P  e. 
Fin
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 968    = wceq 1374   T. wtru 1375    e. wcel 1762   A.wral 2809   {crab 2813   _Vcvv 3108    \ cdif 3468    i^i cin 3470    C_ wss 3471   (/)c0 3780   ifcif 3934   ~Pcpw 4005   {csn 4022   class class class wbr 4442   {copab 4499    |-> cmpt 4500   `'ccnv 4993   dom cdm 4994   "cima 4997    Fn wfn 5576   -->wf 5577   ` cfv 5581  (class class class)co 6277    |-> cmpt2 6279   supp csupp 6893    ^m cmap 7412   X_cixp 7461   Fincfn 7508   CCcc 9481   RRcr 9482   0cc0 9483   1c1 9484    x. cmul 9488    <_ cle 9620   NNcn 10527   2c2 10576   NN0cn0 10786   ZZcz 10855   ZZ>=cuz 11073   ...cfz 11663   ^cexp 12124   sum_csu 13459    || cdivides 13838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440  ax-rep 4553  ax-sep 4563  ax-nul 4571  ax-pow 4620  ax-pr 4681  ax-un 6569  ax-inf2 8049  ax-cnex 9539  ax-resscn 9540  ax-1cn 9541  ax-icn 9542  ax-addcl 9543  ax-addrcl 9544  ax-mulcl 9545  ax-mulrcl 9546  ax-mulcom 9547  ax-addass 9548  ax-mulass 9549  ax-distr 9550  ax-i2m1 9551  ax-1ne0 9552  ax-1rid 9553  ax-rnegex 9554  ax-rrecex 9555  ax-cnre 9556  ax-pre-lttri 9557  ax-pre-lttrn 9558  ax-pre-ltadd 9559  ax-pre-mulgt0 9560  ax-pre-sup 9561
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-fal 1380  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2274  df-mo 2275  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ne 2659  df-nel 2660  df-ral 2814  df-rex 2815  df-reu 2816  df-rmo 2817  df-rab 2818  df-v 3110  df-sbc 3327  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3781  df-if 3935  df-pw 4007  df-sn 4023  df-pr 4025  df-tp 4027  df-op 4029  df-uni 4241  df-int 4278  df-iun 4322  df-br 4443  df-opab 4501  df-mpt 4502  df-tr 4536  df-eprel 4786  df-id 4790  df-po 4795  df-so 4796  df-fr 4833  df-se 4834  df-we 4835  df-ord 4876  df-on 4877  df-lim 4878  df-suc 4879  df-xp 5000  df-rel 5001  df-cnv 5002  df-co 5003  df-dm 5004  df-rn 5005  df-res 5006  df-ima 5007  df-iota 5544  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-isom 5590  df-riota 6238  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-om 6674  df-1st 6776  df-2nd 6777  df-supp 6894  df-recs 7034  df-rdg 7068  df-1o 7122  df-2o 7123  df-oadd 7126  df-er 7303  df-map 7414  df-pm 7415  df-ixp 7462  df-en 7509  df-dom 7510  df-sdom 7511  df-fin 7512  df-sup 7892  df-oi 7926  df-card 8311  df-pnf 9621  df-mnf 9622  df-xr 9623  df-ltxr 9624  df-le 9625  df-sub 9798  df-neg 9799  df-div 10198  df-nn 10528  df-2 10585  df-3 10586  df-n0 10787  df-z 10856  df-uz 11074  df-rp 11212  df-ico 11526  df-fz 11664  df-fzo 11784  df-seq 12066  df-exp 12125  df-hash 12363  df-cj 12884  df-re 12885  df-im 12886  df-sqr 13020  df-abs 13021  df-clim 13262  df-sum 13460
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator