Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartgbij Structured version   Visualization version   Unicode version

Theorem eulerpartgbij 29278
Description: Lemma for eulerpart 29288: The  G function is a bijection. (Contributed by Thierry Arnoux, 27-Aug-2017.) (Revised by Thierry Arnoux, 1-Sep-2019.)
Hypotheses
Ref Expression
eulerpart.p  |-  P  =  { f  e.  ( NN0  ^m  NN )  |  ( ( `' f " NN )  e.  Fin  /\  sum_ k  e.  NN  (
( f `  k
)  x.  k )  =  N ) }
eulerpart.o  |-  O  =  { g  e.  P  |  A. n  e.  ( `' g " NN )  -.  2  ||  n }
eulerpart.d  |-  D  =  { g  e.  P  |  A. n  e.  NN  ( g `  n
)  <_  1 }
eulerpart.j  |-  J  =  { z  e.  NN  |  -.  2  ||  z }
eulerpart.f  |-  F  =  ( x  e.  J ,  y  e.  NN0  |->  ( ( 2 ^ y )  x.  x
) )
eulerpart.h  |-  H  =  { r  e.  ( ( ~P NN0  i^i  Fin )  ^m  J )  |  ( r supp  (/) )  e. 
Fin }
eulerpart.m  |-  M  =  ( r  e.  H  |->  { <. x ,  y
>.  |  ( x  e.  J  /\  y  e.  ( r `  x
) ) } )
eulerpart.r  |-  R  =  { f  |  ( `' f " NN )  e.  Fin }
eulerpart.t  |-  T  =  { f  e.  ( NN0  ^m  NN )  |  ( `' f
" NN )  C_  J }
eulerpart.g  |-  G  =  ( o  e.  ( T  i^i  R ) 
|->  ( (𝟭 `  NN ) `  ( F " ( M `  (bits  o.  ( o  |`  J ) ) ) ) ) )
Assertion
Ref Expression
eulerpartgbij  |-  G :
( T  i^i  R
)
-1-1-onto-> ( ( { 0 ,  1 }  ^m  NN )  i^i  R )
Distinct variable groups:    f, g,
k, n, o, x, y, z    o, F   
f, r, J, o, x, y    o, M, r    f, N, g, x    P, g    R, f, o    o, H, r    T, f, o
Allowed substitution hints:    D( x, y, z, f, g, k, n, o, r)    P( x, y, z, f, k, n, o, r)    R( x, y, z, g, k, n, r)    T( x, y, z, g, k, n, r)    F( x, y, z, f, g, k, n, r)    G( x, y, z, f, g, k, n, o, r)    H( x, y, z, f, g, k, n)    J( z, g, k, n)    M( x, y, z, f, g, k, n)    N( y,
z, k, n, o, r)    O( x, y, z, f, g, k, n, o, r)

Proof of Theorem eulerpartgbij
Dummy variables  a  m  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnex 10637 . . . . 5  |-  NN  e.  _V
2 indf1ofs 28921 . . . . 5  |-  ( NN  e.  _V  ->  (
(𝟭 `  NN )  |`  Fin ) : ( ~P NN  i^i  Fin ) -1-1-onto-> {
f  e.  ( { 0 ,  1 }  ^m  NN )  |  ( `' f " { 1 } )  e.  Fin } )
31, 2ax-mp 5 . . . 4  |-  ( (𝟭 `  NN )  |`  Fin ) : ( ~P NN  i^i  Fin ) -1-1-onto-> { f  e.  ( { 0 ,  1 }  ^m  NN )  |  ( `' f
" { 1 } )  e.  Fin }
4 incom 3616 . . . . . . 7  |-  ( ( { 0 ,  1 }  ^m  NN )  i^i  { f  |  ( `' f " NN )  e.  Fin } )  =  ( { f  |  ( `' f " NN )  e.  Fin }  i^i  ( { 0 ,  1 }  ^m  NN ) )
5 eulerpart.r . . . . . . . 8  |-  R  =  { f  |  ( `' f " NN )  e.  Fin }
65ineq2i 3622 . . . . . . 7  |-  ( ( { 0 ,  1 }  ^m  NN )  i^i  R )  =  ( ( { 0 ,  1 }  ^m  NN )  i^i  { f  |  ( `' f
" NN )  e. 
Fin } )
7 dfrab2 3710 . . . . . . 7  |-  { f  e.  ( { 0 ,  1 }  ^m  NN )  |  ( `' f " NN )  e.  Fin }  =  ( { f  |  ( `' f " NN )  e.  Fin }  i^i  ( { 0 ,  1 }  ^m  NN ) )
84, 6, 73eqtr4i 2503 . . . . . 6  |-  ( ( { 0 ,  1 }  ^m  NN )  i^i  R )  =  { f  e.  ( { 0 ,  1 }  ^m  NN )  |  ( `' f
" NN )  e. 
Fin }
9 elmapfun 7513 . . . . . . . . 9  |-  ( f  e.  ( { 0 ,  1 }  ^m  NN )  ->  Fun  f
)
10 elmapi 7511 . . . . . . . . . 10  |-  ( f  e.  ( { 0 ,  1 }  ^m  NN )  ->  f : NN --> { 0 ,  1 } )
11 frn 5747 . . . . . . . . . 10  |-  ( f : NN --> { 0 ,  1 }  ->  ran  f  C_  { 0 ,  1 } )
1210, 11syl 17 . . . . . . . . 9  |-  ( f  e.  ( { 0 ,  1 }  ^m  NN )  ->  ran  f  C_ 
{ 0 ,  1 } )
13 fimacnvinrn2 28312 . . . . . . . . . 10  |-  ( ( Fun  f  /\  ran  f  C_  { 0 ,  1 } )  -> 
( `' f " NN )  =  ( `' f " ( NN  i^i  { 0 ,  1 } ) ) )
14 df-pr 3962 . . . . . . . . . . . . . 14  |-  { 0 ,  1 }  =  ( { 0 }  u.  { 1 } )
1514ineq2i 3622 . . . . . . . . . . . . 13  |-  ( NN 
i^i  { 0 ,  1 } )  =  ( NN  i^i  ( { 0 }  u.  {
1 } ) )
16 indi 3680 . . . . . . . . . . . . 13  |-  ( NN 
i^i  ( { 0 }  u.  { 1 } ) )  =  ( ( NN  i^i  { 0 } )  u.  ( NN  i^i  {
1 } ) )
17 0nnn 10663 . . . . . . . . . . . . . . 15  |-  -.  0  e.  NN
18 disjsn 4023 . . . . . . . . . . . . . . 15  |-  ( ( NN  i^i  { 0 } )  =  (/)  <->  -.  0  e.  NN )
1917, 18mpbir 214 . . . . . . . . . . . . . 14  |-  ( NN 
i^i  { 0 } )  =  (/)
20 1nn 10642 . . . . . . . . . . . . . . . . 17  |-  1  e.  NN
21 1ex 9656 . . . . . . . . . . . . . . . . . 18  |-  1  e.  _V
2221snss 4087 . . . . . . . . . . . . . . . . 17  |-  ( 1  e.  NN  <->  { 1 }  C_  NN )
2320, 22mpbi 213 . . . . . . . . . . . . . . . 16  |-  { 1 }  C_  NN
24 dfss 3405 . . . . . . . . . . . . . . . 16  |-  ( { 1 }  C_  NN  <->  { 1 }  =  ( { 1 }  i^i  NN ) )
2523, 24mpbi 213 . . . . . . . . . . . . . . 15  |-  { 1 }  =  ( { 1 }  i^i  NN )
26 incom 3616 . . . . . . . . . . . . . . 15  |-  ( { 1 }  i^i  NN )  =  ( NN  i^i  { 1 } )
2725, 26eqtr2i 2494 . . . . . . . . . . . . . 14  |-  ( NN 
i^i  { 1 } )  =  { 1 }
2819, 27uneq12i 3577 . . . . . . . . . . . . 13  |-  ( ( NN  i^i  { 0 } )  u.  ( NN  i^i  { 1 } ) )  =  (
(/)  u.  { 1 } )
2915, 16, 283eqtri 2497 . . . . . . . . . . . 12  |-  ( NN 
i^i  { 0 ,  1 } )  =  (
(/)  u.  { 1 } )
30 uncom 3569 . . . . . . . . . . . 12  |-  ( (/)  u. 
{ 1 } )  =  ( { 1 }  u.  (/) )
31 un0 3762 . . . . . . . . . . . 12  |-  ( { 1 }  u.  (/) )  =  { 1 }
3229, 30, 313eqtri 2497 . . . . . . . . . . 11  |-  ( NN 
i^i  { 0 ,  1 } )  =  {
1 }
3332imaeq2i 5172 . . . . . . . . . 10  |-  ( `' f " ( NN 
i^i  { 0 ,  1 } ) )  =  ( `' f " { 1 } )
3413, 33syl6eq 2521 . . . . . . . . 9  |-  ( ( Fun  f  /\  ran  f  C_  { 0 ,  1 } )  -> 
( `' f " NN )  =  ( `' f " {
1 } ) )
359, 12, 34syl2anc 673 . . . . . . . 8  |-  ( f  e.  ( { 0 ,  1 }  ^m  NN )  ->  ( `' f " NN )  =  ( `' f
" { 1 } ) )
3635eleq1d 2533 . . . . . . 7  |-  ( f  e.  ( { 0 ,  1 }  ^m  NN )  ->  ( ( `' f " NN )  e.  Fin  <->  ( `' f " { 1 } )  e.  Fin )
)
3736rabbiia 3019 . . . . . 6  |-  { f  e.  ( { 0 ,  1 }  ^m  NN )  |  ( `' f " NN )  e.  Fin }  =  { f  e.  ( { 0 ,  1 }  ^m  NN )  |  ( `' f
" { 1 } )  e.  Fin }
388, 37eqtr2i 2494 . . . . 5  |-  { f  e.  ( { 0 ,  1 }  ^m  NN )  |  ( `' f " {
1 } )  e. 
Fin }  =  (
( { 0 ,  1 }  ^m  NN )  i^i  R )
39 f1oeq3 5820 . . . . 5  |-  ( { f  e.  ( { 0 ,  1 }  ^m  NN )  |  ( `' f " { 1 } )  e.  Fin }  =  ( ( { 0 ,  1 }  ^m  NN )  i^i  R )  ->  ( ( (𝟭 `  NN )  |`  Fin ) : ( ~P NN  i^i  Fin ) -1-1-onto-> { f  e.  ( { 0 ,  1 }  ^m  NN )  |  ( `' f
" { 1 } )  e.  Fin }  <->  ( (𝟭 `  NN )  |` 
Fin ) : ( ~P NN  i^i  Fin )
-1-1-onto-> ( ( { 0 ,  1 }  ^m  NN )  i^i  R ) ) )
4038, 39ax-mp 5 . . . 4  |-  ( ( (𝟭 `  NN )  |` 
Fin ) : ( ~P NN  i^i  Fin )
-1-1-onto-> { f  e.  ( { 0 ,  1 }  ^m  NN )  |  ( `' f
" { 1 } )  e.  Fin }  <->  ( (𝟭 `  NN )  |` 
Fin ) : ( ~P NN  i^i  Fin )
-1-1-onto-> ( ( { 0 ,  1 }  ^m  NN )  i^i  R ) )
413, 40mpbi 213 . . 3  |-  ( (𝟭 `  NN )  |`  Fin ) : ( ~P NN  i^i  Fin ) -1-1-onto-> ( ( { 0 ,  1 }  ^m  NN )  i^i  R )
42 eulerpart.j . . . . . . 7  |-  J  =  { z  e.  NN  |  -.  2  ||  z }
43 eulerpart.f . . . . . . 7  |-  F  =  ( x  e.  J ,  y  e.  NN0  |->  ( ( 2 ^ y )  x.  x
) )
4442, 43oddpwdc 29260 . . . . . 6  |-  F :
( J  X.  NN0 )
-1-1-onto-> NN
45 f1opwfi 7896 . . . . . 6  |-  ( F : ( J  X.  NN0 ) -1-1-onto-> NN  ->  ( a  e.  ( ~P ( J  X.  NN0 )  i^i 
Fin )  |->  ( F
" a ) ) : ( ~P ( J  X.  NN0 )  i^i 
Fin ) -1-1-onto-> ( ~P NN  i^i  Fin ) )
4644, 45ax-mp 5 . . . . 5  |-  ( a  e.  ( ~P ( J  X.  NN0 )  i^i 
Fin )  |->  ( F
" a ) ) : ( ~P ( J  X.  NN0 )  i^i 
Fin ) -1-1-onto-> ( ~P NN  i^i  Fin )
47 eulerpart.p . . . . . . . 8  |-  P  =  { f  e.  ( NN0  ^m  NN )  |  ( ( `' f " NN )  e.  Fin  /\  sum_ k  e.  NN  (
( f `  k
)  x.  k )  =  N ) }
48 eulerpart.o . . . . . . . 8  |-  O  =  { g  e.  P  |  A. n  e.  ( `' g " NN )  -.  2  ||  n }
49 eulerpart.d . . . . . . . 8  |-  D  =  { g  e.  P  |  A. n  e.  NN  ( g `  n
)  <_  1 }
50 eulerpart.h . . . . . . . 8  |-  H  =  { r  e.  ( ( ~P NN0  i^i  Fin )  ^m  J )  |  ( r supp  (/) )  e. 
Fin }
51 eulerpart.m . . . . . . . 8  |-  M  =  ( r  e.  H  |->  { <. x ,  y
>.  |  ( x  e.  J  /\  y  e.  ( r `  x
) ) } )
5247, 48, 49, 42, 43, 50, 51eulerpartlem1 29273 . . . . . . 7  |-  M : H
-1-1-onto-> ( ~P ( J  X.  NN0 )  i^i  Fin )
53 bitsf1o 14498 . . . . . . . . . . . . . 14  |-  (bits  |`  NN0 ) : NN0
-1-1-onto-> ( ~P NN0  i^i  Fin )
5453a1i 11 . . . . . . . . . . . . 13  |-  ( T. 
->  (bits  |`  NN0 ) : NN0
-1-1-onto-> ( ~P NN0  i^i  Fin ) )
5542, 1rabex2 4552 . . . . . . . . . . . . . 14  |-  J  e. 
_V
5655a1i 11 . . . . . . . . . . . . 13  |-  ( T. 
->  J  e.  _V )
57 nn0ex 10899 . . . . . . . . . . . . . 14  |-  NN0  e.  _V
5857a1i 11 . . . . . . . . . . . . 13  |-  ( T. 
->  NN0  e.  _V )
5957pwex 4584 . . . . . . . . . . . . . . 15  |-  ~P NN0  e.  _V
6059inex1 4537 . . . . . . . . . . . . . 14  |-  ( ~P
NN0  i^i  Fin )  e.  _V
6160a1i 11 . . . . . . . . . . . . 13  |-  ( T. 
->  ( ~P NN0  i^i  Fin )  e.  _V )
62 0nn0 10908 . . . . . . . . . . . . . 14  |-  0  e.  NN0
6362a1i 11 . . . . . . . . . . . . 13  |-  ( T. 
->  0  e.  NN0 )
64 fvres 5893 . . . . . . . . . . . . . . 15  |-  ( 0  e.  NN0  ->  ( (bits  |`  NN0 ) `  0
)  =  (bits ` 
0 ) )
6562, 64ax-mp 5 . . . . . . . . . . . . . 14  |-  ( (bits  |`  NN0 ) `  0
)  =  (bits ` 
0 )
66 0bits 14492 . . . . . . . . . . . . . 14  |-  (bits ` 
0 )  =  (/)
6765, 66eqtr2i 2494 . . . . . . . . . . . . 13  |-  (/)  =  ( (bits  |`  NN0 ) ` 
0 )
68 elmapi 7511 . . . . . . . . . . . . . . . . 17  |-  ( f  e.  ( NN0  ^m  J )  ->  f : J --> NN0 )
69 frnnn0supp 10947 . . . . . . . . . . . . . . . . 17  |-  ( ( J  e.  _V  /\  f : J --> NN0 )  ->  ( f supp  0 )  =  ( `' f
" NN ) )
7055, 68, 69sylancr 676 . . . . . . . . . . . . . . . 16  |-  ( f  e.  ( NN0  ^m  J )  ->  (
f supp  0 )  =  ( `' f " NN ) )
7170eleq1d 2533 . . . . . . . . . . . . . . 15  |-  ( f  e.  ( NN0  ^m  J )  ->  (
( f supp  0 )  e.  Fin  <->  ( `' f " NN )  e. 
Fin ) )
7271rabbiia 3019 . . . . . . . . . . . . . 14  |-  { f  e.  ( NN0  ^m  J )  |  ( f supp  0 )  e. 
Fin }  =  {
f  e.  ( NN0 
^m  J )  |  ( `' f " NN )  e.  Fin }
73 elmapfun 7513 . . . . . . . . . . . . . . . 16  |-  ( f  e.  ( NN0  ^m  J )  ->  Fun  f )
74 vex 3034 . . . . . . . . . . . . . . . . 17  |-  f  e. 
_V
75 funisfsupp 7906 . . . . . . . . . . . . . . . . 17  |-  ( ( Fun  f  /\  f  e.  _V  /\  0  e. 
NN0 )  ->  (
f finSupp  0  <->  ( f supp  0
)  e.  Fin )
)
7674, 62, 75mp3an23 1382 . . . . . . . . . . . . . . . 16  |-  ( Fun  f  ->  ( f finSupp  0  <-> 
( f supp  0 )  e.  Fin ) )
7773, 76syl 17 . . . . . . . . . . . . . . 15  |-  ( f  e.  ( NN0  ^m  J )  ->  (
f finSupp  0  <->  ( f supp  0
)  e.  Fin )
)
7877rabbiia 3019 . . . . . . . . . . . . . 14  |-  { f  e.  ( NN0  ^m  J )  |  f finSupp 
0 }  =  {
f  e.  ( NN0 
^m  J )  |  ( f supp  0 )  e.  Fin }
79 incom 3616 . . . . . . . . . . . . . . 15  |-  ( { f  |  ( `' f " NN )  e.  Fin }  i^i  ( NN0  ^m  J ) )  =  ( ( NN0  ^m  J )  i^i  { f  |  ( `' f " NN )  e.  Fin } )
80 dfrab2 3710 . . . . . . . . . . . . . . 15  |-  { f  e.  ( NN0  ^m  J )  |  ( `' f " NN )  e.  Fin }  =  ( { f  |  ( `' f " NN )  e.  Fin }  i^i  ( NN0  ^m  J ) )
815ineq2i 3622 . . . . . . . . . . . . . . 15  |-  ( ( NN0  ^m  J )  i^i  R )  =  ( ( NN0  ^m  J )  i^i  {
f  |  ( `' f " NN )  e.  Fin } )
8279, 80, 813eqtr4ri 2504 . . . . . . . . . . . . . 14  |-  ( ( NN0  ^m  J )  i^i  R )  =  { f  e.  ( NN0  ^m  J )  |  ( `' f
" NN )  e. 
Fin }
8372, 78, 823eqtr4ri 2504 . . . . . . . . . . . . 13  |-  ( ( NN0  ^m  J )  i^i  R )  =  { f  e.  ( NN0  ^m  J )  |  f finSupp  0 }
84 elmapfun 7513 . . . . . . . . . . . . . . 15  |-  ( r  e.  ( ( ~P
NN0  i^i  Fin )  ^m  J )  ->  Fun  r )
85 vex 3034 . . . . . . . . . . . . . . . . 17  |-  r  e. 
_V
86 0ex 4528 . . . . . . . . . . . . . . . . 17  |-  (/)  e.  _V
87 funisfsupp 7906 . . . . . . . . . . . . . . . . 17  |-  ( ( Fun  r  /\  r  e.  _V  /\  (/)  e.  _V )  ->  ( r finSupp  (/)  <->  ( r supp  (/) )  e.  Fin )
)
8885, 86, 87mp3an23 1382 . . . . . . . . . . . . . . . 16  |-  ( Fun  r  ->  ( r finSupp  (/)  <->  (
r supp  (/) )  e.  Fin ) )
8988bicomd 206 . . . . . . . . . . . . . . 15  |-  ( Fun  r  ->  ( (
r supp  (/) )  e.  Fin  <->  r finSupp  (/) ) )
9084, 89syl 17 . . . . . . . . . . . . . 14  |-  ( r  e.  ( ( ~P
NN0  i^i  Fin )  ^m  J )  ->  (
( r supp  (/) )  e. 
Fin 
<->  r finSupp  (/) ) )
9190rabbiia 3019 . . . . . . . . . . . . 13  |-  { r  e.  ( ( ~P
NN0  i^i  Fin )  ^m  J )  |  ( r supp  (/) )  e.  Fin }  =  { r  e.  ( ( ~P NN0  i^i 
Fin )  ^m  J
)  |  r finSupp  (/) }
9254, 56, 58, 61, 63, 67, 83, 91fcobijfs 28386 . . . . . . . . . . . 12  |-  ( T. 
->  ( f  e.  ( ( NN0  ^m  J
)  i^i  R )  |->  ( (bits  |`  NN0 )  o.  f ) ) : ( ( NN0  ^m  J )  i^i  R
)
-1-1-onto-> { r  e.  ( ( ~P NN0  i^i  Fin )  ^m  J )  |  ( r supp  (/) )  e. 
Fin } )
93 elinel1 3610 . . . . . . . . . . . . . . . 16  |-  ( f  e.  ( ( NN0 
^m  J )  i^i 
R )  ->  f  e.  ( NN0  ^m  J
) )
94 frn 5747 . . . . . . . . . . . . . . . . 17  |-  ( f : J --> NN0  ->  ran  f  C_  NN0 )
95 cores 5345 . . . . . . . . . . . . . . . . 17  |-  ( ran  f  C_  NN0  ->  (
(bits  |`  NN0 )  o.  f )  =  (bits 
o.  f ) )
9668, 94, 953syl 18 . . . . . . . . . . . . . . . 16  |-  ( f  e.  ( NN0  ^m  J )  ->  (
(bits  |`  NN0 )  o.  f )  =  (bits 
o.  f ) )
9793, 96syl 17 . . . . . . . . . . . . . . 15  |-  ( f  e.  ( ( NN0 
^m  J )  i^i 
R )  ->  (
(bits  |`  NN0 )  o.  f )  =  (bits 
o.  f ) )
9897mpteq2ia 4478 . . . . . . . . . . . . . 14  |-  ( f  e.  ( ( NN0 
^m  J )  i^i 
R )  |->  ( (bits  |`  NN0 )  o.  f
) )  =  ( f  e.  ( ( NN0  ^m  J )  i^i  R )  |->  (bits 
o.  f ) )
9998eqcomi 2480 . . . . . . . . . . . . 13  |-  ( f  e.  ( ( NN0 
^m  J )  i^i 
R )  |->  (bits  o.  f ) )  =  ( f  e.  ( ( NN0  ^m  J
)  i^i  R )  |->  ( (bits  |`  NN0 )  o.  f ) )
100 f1oeq1 5818 . . . . . . . . . . . . 13  |-  ( ( f  e.  ( ( NN0  ^m  J )  i^i  R )  |->  (bits 
o.  f ) )  =  ( f  e.  ( ( NN0  ^m  J )  i^i  R
)  |->  ( (bits  |`  NN0 )  o.  f ) )  -> 
( ( f  e.  ( ( NN0  ^m  J )  i^i  R
)  |->  (bits  o.  f
) ) : ( ( NN0  ^m  J
)  i^i  R ) -1-1-onto-> {
r  e.  ( ( ~P NN0  i^i  Fin )  ^m  J )  |  ( r supp  (/) )  e. 
Fin }  <->  ( f  e.  ( ( NN0  ^m  J )  i^i  R
)  |->  ( (bits  |`  NN0 )  o.  f ) ) : ( ( NN0  ^m  J )  i^i  R
)
-1-1-onto-> { r  e.  ( ( ~P NN0  i^i  Fin )  ^m  J )  |  ( r supp  (/) )  e. 
Fin } ) )
10199, 100mp1i 13 . . . . . . . . . . . 12  |-  ( T. 
->  ( ( f  e.  ( ( NN0  ^m  J )  i^i  R
)  |->  (bits  o.  f
) ) : ( ( NN0  ^m  J
)  i^i  R ) -1-1-onto-> {
r  e.  ( ( ~P NN0  i^i  Fin )  ^m  J )  |  ( r supp  (/) )  e. 
Fin }  <->  ( f  e.  ( ( NN0  ^m  J )  i^i  R
)  |->  ( (bits  |`  NN0 )  o.  f ) ) : ( ( NN0  ^m  J )  i^i  R
)
-1-1-onto-> { r  e.  ( ( ~P NN0  i^i  Fin )  ^m  J )  |  ( r supp  (/) )  e. 
Fin } ) )
10292, 101mpbird 240 . . . . . . . . . . 11  |-  ( T. 
->  ( f  e.  ( ( NN0  ^m  J
)  i^i  R )  |->  (bits  o.  f ) ) : ( ( NN0  ^m  J )  i^i  R ) -1-1-onto-> { r  e.  ( ( ~P
NN0  i^i  Fin )  ^m  J )  |  ( r supp  (/) )  e.  Fin } )
103102trud 1461 . . . . . . . . . 10  |-  ( f  e.  ( ( NN0 
^m  J )  i^i 
R )  |->  (bits  o.  f ) ) : ( ( NN0  ^m  J )  i^i  R
)
-1-1-onto-> { r  e.  ( ( ~P NN0  i^i  Fin )  ^m  J )  |  ( r supp  (/) )  e. 
Fin }
104 ssrab2 3500 . . . . . . . . . . . . . . . 16  |-  { z  e.  NN  |  -.  2  ||  z }  C_  NN
10542, 104eqsstri 3448 . . . . . . . . . . . . . . 15  |-  J  C_  NN
1061, 57, 1053pm3.2i 1208 . . . . . . . . . . . . . 14  |-  ( NN  e.  _V  /\  NN0  e.  _V  /\  J  C_  NN )
107 eulerpart.t . . . . . . . . . . . . . . . 16  |-  T  =  { f  e.  ( NN0  ^m  NN )  |  ( `' f
" NN )  C_  J }
108 cnveq 5013 . . . . . . . . . . . . . . . . . . 19  |-  ( f  =  o  ->  `' f  =  `' o
)
109 dfn2 10906 . . . . . . . . . . . . . . . . . . . 20  |-  NN  =  ( NN0  \  { 0 } )
110109a1i 11 . . . . . . . . . . . . . . . . . . 19  |-  ( f  =  o  ->  NN  =  ( NN0  \  {
0 } ) )
111108, 110imaeq12d 5175 . . . . . . . . . . . . . . . . . 18  |-  ( f  =  o  ->  ( `' f " NN )  =  ( `' o " ( NN0  \  {
0 } ) ) )
112111sseq1d 3445 . . . . . . . . . . . . . . . . 17  |-  ( f  =  o  ->  (
( `' f " NN )  C_  J  <->  ( `' o " ( NN0  \  {
0 } ) ) 
C_  J ) )
113112cbvrabv 3030 . . . . . . . . . . . . . . . 16  |-  { f  e.  ( NN0  ^m  NN )  |  ( `' f " NN )  C_  J }  =  { o  e.  ( NN0  ^m  NN )  |  ( `' o
" ( NN0  \  {
0 } ) ) 
C_  J }
114107, 113eqtri 2493 . . . . . . . . . . . . . . 15  |-  T  =  { o  e.  ( NN0  ^m  NN )  |  ( `' o
" ( NN0  \  {
0 } ) ) 
C_  J }
115 eqid 2471 . . . . . . . . . . . . . . 15  |-  ( o  e.  T  |->  ( o  |`  J ) )  =  ( o  e.  T  |->  ( o  |`  J ) )
116114, 115resf1o 28390 . . . . . . . . . . . . . 14  |-  ( ( ( NN  e.  _V  /\ 
NN0  e.  _V  /\  J  C_  NN )  /\  0  e.  NN0 )  ->  (
o  e.  T  |->  ( o  |`  J )
) : T -1-1-onto-> ( NN0 
^m  J ) )
117106, 62, 116mp2an 686 . . . . . . . . . . . . 13  |-  ( o  e.  T  |->  ( o  |`  J ) ) : T -1-1-onto-> ( NN0  ^m  J
)
118 f1of1 5827 . . . . . . . . . . . . 13  |-  ( ( o  e.  T  |->  ( o  |`  J )
) : T -1-1-onto-> ( NN0 
^m  J )  -> 
( o  e.  T  |->  ( o  |`  J ) ) : T -1-1-> ( NN0  ^m  J ) )
119117, 118ax-mp 5 . . . . . . . . . . . 12  |-  ( o  e.  T  |->  ( o  |`  J ) ) : T -1-1-> ( NN0  ^m  J )
120 inss1 3643 . . . . . . . . . . . 12  |-  ( T  i^i  R )  C_  T
121 f1ores 5842 . . . . . . . . . . . 12  |-  ( ( ( o  e.  T  |->  ( o  |`  J ) ) : T -1-1-> ( NN0  ^m  J )  /\  ( T  i^i  R )  C_  T )  ->  ( ( o  e.  T  |->  ( o  |`  J ) )  |`  ( T  i^i  R ) ) : ( T  i^i  R ) -1-1-onto-> ( ( o  e.  T  |->  ( o  |`  J )
) " ( T  i^i  R ) ) )
122119, 120, 121mp2an 686 . . . . . . . . . . 11  |-  ( ( o  e.  T  |->  ( o  |`  J )
)  |`  ( T  i^i  R ) ) : ( T  i^i  R ) -1-1-onto-> ( ( o  e.  T  |->  ( o  |`  J ) ) " ( T  i^i  R ) )
123 vex 3034 . . . . . . . . . . . . . . . . . 18  |-  o  e. 
_V
124123resex 5154 . . . . . . . . . . . . . . . . 17  |-  ( o  |`  J )  e.  _V
125124, 115fnmpti 5716 . . . . . . . . . . . . . . . 16  |-  ( o  e.  T  |->  ( o  |`  J ) )  Fn  T
126 fvelimab 5936 . . . . . . . . . . . . . . . 16  |-  ( ( ( o  e.  T  |->  ( o  |`  J ) )  Fn  T  /\  ( T  i^i  R ) 
C_  T )  -> 
( f  e.  ( ( o  e.  T  |->  ( o  |`  J ) ) " ( T  i^i  R ) )  <->  E. m  e.  ( T  i^i  R ) ( ( o  e.  T  |->  ( o  |`  J ) ) `  m )  =  f ) )
127125, 120, 126mp2an 686 . . . . . . . . . . . . . . 15  |-  ( f  e.  ( ( o  e.  T  |->  ( o  |`  J ) ) "
( T  i^i  R
) )  <->  E. m  e.  ( T  i^i  R
) ( ( o  e.  T  |->  ( o  |`  J ) ) `  m )  =  f )
128 eqid 2471 . . . . . . . . . . . . . . . . 17  |-  ( m  e.  ( T  i^i  R )  |->  ( m  |`  J ) )  =  ( m  e.  ( T  i^i  R ) 
|->  ( m  |`  J ) )
129 vex 3034 . . . . . . . . . . . . . . . . . 18  |-  m  e. 
_V
130129resex 5154 . . . . . . . . . . . . . . . . 17  |-  ( m  |`  J )  e.  _V
131128, 130elrnmpti 5091 . . . . . . . . . . . . . . . 16  |-  ( f  e.  ran  ( m  e.  ( T  i^i  R )  |->  ( m  |`  J ) )  <->  E. m  e.  ( T  i^i  R
) f  =  ( m  |`  J )
)
13247, 48, 49, 42, 43, 50, 51, 5, 107eulerpartlemt 29277 . . . . . . . . . . . . . . . . 17  |-  ( ( NN0  ^m  J )  i^i  R )  =  ran  ( m  e.  ( T  i^i  R
)  |->  ( m  |`  J ) )
133132eleq2i 2541 . . . . . . . . . . . . . . . 16  |-  ( f  e.  ( ( NN0 
^m  J )  i^i 
R )  <->  f  e.  ran  ( m  e.  ( T  i^i  R ) 
|->  ( m  |`  J ) ) )
134 elinel1 3610 . . . . . . . . . . . . . . . . . . 19  |-  ( m  e.  ( T  i^i  R )  ->  m  e.  T )
135115fvtresfn 5965 . . . . . . . . . . . . . . . . . . . 20  |-  ( m  e.  T  ->  (
( o  e.  T  |->  ( o  |`  J ) ) `  m )  =  ( m  |`  J ) )
136135eqeq1d 2473 . . . . . . . . . . . . . . . . . . 19  |-  ( m  e.  T  ->  (
( ( o  e.  T  |->  ( o  |`  J ) ) `  m )  =  f  <-> 
( m  |`  J )  =  f ) )
137134, 136syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( m  e.  ( T  i^i  R )  ->  ( (
( o  e.  T  |->  ( o  |`  J ) ) `  m )  =  f  <->  ( m  |`  J )  =  f ) )
138 eqcom 2478 . . . . . . . . . . . . . . . . . 18  |-  ( ( m  |`  J )  =  f  <->  f  =  ( m  |`  J )
)
139137, 138syl6bb 269 . . . . . . . . . . . . . . . . 17  |-  ( m  e.  ( T  i^i  R )  ->  ( (
( o  e.  T  |->  ( o  |`  J ) ) `  m )  =  f  <->  f  =  ( m  |`  J ) ) )
140139rexbiia 2880 . . . . . . . . . . . . . . . 16  |-  ( E. m  e.  ( T  i^i  R ) ( ( o  e.  T  |->  ( o  |`  J ) ) `  m )  =  f  <->  E. m  e.  ( T  i^i  R
) f  =  ( m  |`  J )
)
141131, 133, 1403bitr4ri 286 . . . . . . . . . . . . . . 15  |-  ( E. m  e.  ( T  i^i  R ) ( ( o  e.  T  |->  ( o  |`  J ) ) `  m )  =  f  <->  f  e.  ( ( NN0  ^m  J )  i^i  R
) )
142127, 141bitri 257 . . . . . . . . . . . . . 14  |-  ( f  e.  ( ( o  e.  T  |->  ( o  |`  J ) ) "
( T  i^i  R
) )  <->  f  e.  ( ( NN0  ^m  J )  i^i  R
) )
143142eqriv 2468 . . . . . . . . . . . . 13  |-  ( ( o  e.  T  |->  ( o  |`  J )
) " ( T  i^i  R ) )  =  ( ( NN0 
^m  J )  i^i 
R )
144 f1oeq3 5820 . . . . . . . . . . . . 13  |-  ( ( ( o  e.  T  |->  ( o  |`  J ) ) " ( T  i^i  R ) )  =  ( ( NN0 
^m  J )  i^i 
R )  ->  (
( ( o  e.  T  |->  ( o  |`  J ) )  |`  ( T  i^i  R ) ) : ( T  i^i  R ) -1-1-onto-> ( ( o  e.  T  |->  ( o  |`  J )
) " ( T  i^i  R ) )  <-> 
( ( o  e.  T  |->  ( o  |`  J ) )  |`  ( T  i^i  R ) ) : ( T  i^i  R ) -1-1-onto-> ( ( NN0  ^m  J )  i^i  R ) ) )
145143, 144ax-mp 5 . . . . . . . . . . . 12  |-  ( ( ( o  e.  T  |->  ( o  |`  J ) )  |`  ( T  i^i  R ) ) : ( T  i^i  R
)
-1-1-onto-> ( ( o  e.  T  |->  ( o  |`  J ) ) "
( T  i^i  R
) )  <->  ( (
o  e.  T  |->  ( o  |`  J )
)  |`  ( T  i^i  R ) ) : ( T  i^i  R ) -1-1-onto-> ( ( NN0  ^m  J
)  i^i  R )
)
146 resmpt 5160 . . . . . . . . . . . . 13  |-  ( ( T  i^i  R ) 
C_  T  ->  (
( o  e.  T  |->  ( o  |`  J ) )  |`  ( T  i^i  R ) )  =  ( o  e.  ( T  i^i  R ) 
|->  ( o  |`  J ) ) )
147 f1oeq1 5818 . . . . . . . . . . . . 13  |-  ( ( ( o  e.  T  |->  ( o  |`  J ) )  |`  ( T  i^i  R ) )  =  ( o  e.  ( T  i^i  R ) 
|->  ( o  |`  J ) )  ->  ( (
( o  e.  T  |->  ( o  |`  J ) )  |`  ( T  i^i  R ) ) : ( T  i^i  R
)
-1-1-onto-> ( ( NN0  ^m  J )  i^i  R
)  <->  ( o  e.  ( T  i^i  R
)  |->  ( o  |`  J ) ) : ( T  i^i  R
)
-1-1-onto-> ( ( NN0  ^m  J )  i^i  R
) ) )
148120, 146, 147mp2b 10 . . . . . . . . . . . 12  |-  ( ( ( o  e.  T  |->  ( o  |`  J ) )  |`  ( T  i^i  R ) ) : ( T  i^i  R
)
-1-1-onto-> ( ( NN0  ^m  J )  i^i  R
)  <->  ( o  e.  ( T  i^i  R
)  |->  ( o  |`  J ) ) : ( T  i^i  R
)
-1-1-onto-> ( ( NN0  ^m  J )  i^i  R
) )
149145, 148bitri 257 . . . . . . . . . . 11  |-  ( ( ( o  e.  T  |->  ( o  |`  J ) )  |`  ( T  i^i  R ) ) : ( T  i^i  R
)
-1-1-onto-> ( ( o  e.  T  |->  ( o  |`  J ) ) "
( T  i^i  R
) )  <->  ( o  e.  ( T  i^i  R
)  |->  ( o  |`  J ) ) : ( T  i^i  R
)
-1-1-onto-> ( ( NN0  ^m  J )  i^i  R
) )
150122, 149mpbi 213 . . . . . . . . . 10  |-  ( o  e.  ( T  i^i  R )  |->  ( o  |`  J ) ) : ( T  i^i  R
)
-1-1-onto-> ( ( NN0  ^m  J )  i^i  R
)
151 f1oco 5850 . . . . . . . . . 10  |-  ( ( ( f  e.  ( ( NN0  ^m  J
)  i^i  R )  |->  (bits  o.  f ) ) : ( ( NN0  ^m  J )  i^i  R ) -1-1-onto-> { r  e.  ( ( ~P
NN0  i^i  Fin )  ^m  J )  |  ( r supp  (/) )  e.  Fin }  /\  ( o  e.  ( T  i^i  R
)  |->  ( o  |`  J ) ) : ( T  i^i  R
)
-1-1-onto-> ( ( NN0  ^m  J )  i^i  R
) )  ->  (
( f  e.  ( ( NN0  ^m  J
)  i^i  R )  |->  (bits  o.  f ) )  o.  ( o  e.  ( T  i^i  R )  |->  ( o  |`  J ) ) ) : ( T  i^i  R ) -1-1-onto-> { r  e.  ( ( ~P NN0  i^i  Fin )  ^m  J )  |  ( r supp  (/) )  e. 
Fin } )
152103, 150, 151mp2an 686 . . . . . . . . 9  |-  ( ( f  e.  ( ( NN0  ^m  J )  i^i  R )  |->  (bits 
o.  f ) )  o.  ( o  e.  ( T  i^i  R
)  |->  ( o  |`  J ) ) ) : ( T  i^i  R ) -1-1-onto-> { r  e.  ( ( ~P NN0  i^i  Fin )  ^m  J )  |  ( r supp  (/) )  e. 
Fin }
153 f1of 5828 . . . . . . . . . . . . . 14  |-  ( ( o  e.  ( T  i^i  R )  |->  ( o  |`  J )
) : ( T  i^i  R ) -1-1-onto-> ( ( NN0  ^m  J )  i^i  R )  -> 
( o  e.  ( T  i^i  R ) 
|->  ( o  |`  J ) ) : ( T  i^i  R ) --> ( ( NN0  ^m  J
)  i^i  R )
)
154 eqid 2471 . . . . . . . . . . . . . . . 16  |-  ( o  e.  ( T  i^i  R )  |->  ( o  |`  J ) )  =  ( o  e.  ( T  i^i  R ) 
|->  ( o  |`  J ) )
155154fmpt 6058 . . . . . . . . . . . . . . 15  |-  ( A. o  e.  ( T  i^i  R ) ( o  |`  J )  e.  ( ( NN0  ^m  J
)  i^i  R )  <->  ( o  e.  ( T  i^i  R )  |->  ( o  |`  J )
) : ( T  i^i  R ) --> ( ( NN0  ^m  J
)  i^i  R )
)
156155biimpri 211 . . . . . . . . . . . . . 14  |-  ( ( o  e.  ( T  i^i  R )  |->  ( o  |`  J )
) : ( T  i^i  R ) --> ( ( NN0  ^m  J
)  i^i  R )  ->  A. o  e.  ( T  i^i  R ) ( o  |`  J )  e.  ( ( NN0 
^m  J )  i^i 
R ) )
157150, 153, 156mp2b 10 . . . . . . . . . . . . 13  |-  A. o  e.  ( T  i^i  R
) ( o  |`  J )  e.  ( ( NN0  ^m  J
)  i^i  R )
158157a1i 11 . . . . . . . . . . . 12  |-  ( T. 
->  A. o  e.  ( T  i^i  R ) ( o  |`  J )  e.  ( ( NN0 
^m  J )  i^i 
R ) )
159 eqidd 2472 . . . . . . . . . . . 12  |-  ( T. 
->  ( o  e.  ( T  i^i  R ) 
|->  ( o  |`  J ) )  =  ( o  e.  ( T  i^i  R )  |->  ( o  |`  J ) ) )
160 eqidd 2472 . . . . . . . . . . . 12  |-  ( T. 
->  ( f  e.  ( ( NN0  ^m  J
)  i^i  R )  |->  (bits  o.  f ) )  =  ( f  e.  ( ( NN0 
^m  J )  i^i 
R )  |->  (bits  o.  f ) ) )
161 coeq2 4998 . . . . . . . . . . . 12  |-  ( f  =  ( o  |`  J )  ->  (bits  o.  f )  =  (bits 
o.  ( o  |`  J ) ) )
162158, 159, 160, 161fmptcof 6073 . . . . . . . . . . 11  |-  ( T. 
->  ( ( f  e.  ( ( NN0  ^m  J )  i^i  R
)  |->  (bits  o.  f
) )  o.  (
o  e.  ( T  i^i  R )  |->  ( o  |`  J )
) )  =  ( o  e.  ( T  i^i  R )  |->  (bits 
o.  ( o  |`  J ) ) ) )
163162eqcomd 2477 . . . . . . . . . 10  |-  ( T. 
->  ( o  e.  ( T  i^i  R ) 
|->  (bits  o.  ( o  |`  J ) ) )  =  ( ( f  e.  ( ( NN0 
^m  J )  i^i 
R )  |->  (bits  o.  f ) )  o.  ( o  e.  ( T  i^i  R ) 
|->  ( o  |`  J ) ) ) )
164 eqidd 2472 . . . . . . . . . 10  |-  ( T. 
->  ( T  i^i  R
)  =  ( T  i^i  R ) )
16550a1i 11 . . . . . . . . . 10  |-  ( T. 
->  H  =  {
r  e.  ( ( ~P NN0  i^i  Fin )  ^m  J )  |  ( r supp  (/) )  e. 
Fin } )
166163, 164, 165f1oeq123d 5824 . . . . . . . . 9  |-  ( T. 
->  ( ( o  e.  ( T  i^i  R
)  |->  (bits  o.  (
o  |`  J ) ) ) : ( T  i^i  R ) -1-1-onto-> H  <->  ( (
f  e.  ( ( NN0  ^m  J )  i^i  R )  |->  (bits 
o.  f ) )  o.  ( o  e.  ( T  i^i  R
)  |->  ( o  |`  J ) ) ) : ( T  i^i  R ) -1-1-onto-> { r  e.  ( ( ~P NN0  i^i  Fin )  ^m  J )  |  ( r supp  (/) )  e. 
Fin } ) )
167152, 166mpbiri 241 . . . . . . . 8  |-  ( T. 
->  ( o  e.  ( T  i^i  R ) 
|->  (bits  o.  ( o  |`  J ) ) ) : ( T  i^i  R ) -1-1-onto-> H )
168167trud 1461 . . . . . . 7  |-  ( o  e.  ( T  i^i  R )  |->  (bits  o.  (
o  |`  J ) ) ) : ( T  i^i  R ) -1-1-onto-> H
169 f1oco 5850 . . . . . . 7  |-  ( ( M : H -1-1-onto-> ( ~P ( J  X.  NN0 )  i^i  Fin )  /\  ( o  e.  ( T  i^i  R ) 
|->  (bits  o.  ( o  |`  J ) ) ) : ( T  i^i  R ) -1-1-onto-> H )  ->  ( M  o.  ( o  e.  ( T  i^i  R
)  |->  (bits  o.  (
o  |`  J ) ) ) ) : ( T  i^i  R ) -1-1-onto-> ( ~P ( J  X.  NN0 )  i^i  Fin )
)
17052, 168, 169mp2an 686 . . . . . 6  |-  ( M  o.  ( o  e.  ( T  i^i  R
)  |->  (bits  o.  (
o  |`  J ) ) ) ) : ( T  i^i  R ) -1-1-onto-> ( ~P ( J  X.  NN0 )  i^i  Fin )
171 eqidd 2472 . . . . . . . . . . 11  |-  ( T. 
->  ( o  e.  ( T  i^i  R ) 
|->  (bits  o.  ( o  |`  J ) ) )  =  ( o  e.  ( T  i^i  R
)  |->  (bits  o.  (
o  |`  J ) ) ) )
172 bitsf 14479 . . . . . . . . . . . . . 14  |- bits : ZZ --> ~P NN0
173 zex 10970 . . . . . . . . . . . . . 14  |-  ZZ  e.  _V
174 fex 6155 . . . . . . . . . . . . . 14  |-  ( (bits
: ZZ --> ~P NN0  /\  ZZ  e.  _V )  -> bits  e.  _V )
175172, 173, 174mp2an 686 . . . . . . . . . . . . 13  |- bits  e.  _V
176175, 124coex 6764 . . . . . . . . . . . 12  |-  (bits  o.  ( o  |`  J ) )  e.  _V
177176a1i 11 . . . . . . . . . . 11  |-  ( ( T.  /\  o  e.  ( T  i^i  R
) )  ->  (bits  o.  ( o  |`  J ) )  e.  _V )
178171, 177fvmpt2d 5974 . . . . . . . . . 10  |-  ( ( T.  /\  o  e.  ( T  i^i  R
) )  ->  (
( o  e.  ( T  i^i  R ) 
|->  (bits  o.  ( o  |`  J ) ) ) `
 o )  =  (bits  o.  ( o  |`  J ) ) )
179 f1of 5828 . . . . . . . . . . . 12  |-  ( ( o  e.  ( T  i^i  R )  |->  (bits 
o.  ( o  |`  J ) ) ) : ( T  i^i  R ) -1-1-onto-> H  ->  ( o  e.  ( T  i^i  R
)  |->  (bits  o.  (
o  |`  J ) ) ) : ( T  i^i  R ) --> H )
180167, 179syl 17 . . . . . . . . . . 11  |-  ( T. 
->  ( o  e.  ( T  i^i  R ) 
|->  (bits  o.  ( o  |`  J ) ) ) : ( T  i^i  R ) --> H )
181180ffvelrnda 6037 . . . . . . . . . 10  |-  ( ( T.  /\  o  e.  ( T  i^i  R
) )  ->  (
( o  e.  ( T  i^i  R ) 
|->  (bits  o.  ( o  |`  J ) ) ) `
 o )  e.  H )
182178, 181eqeltrrd 2550 . . . . . . . . 9  |-  ( ( T.  /\  o  e.  ( T  i^i  R
) )  ->  (bits  o.  ( o  |`  J ) )  e.  H )
183 f1ofn 5829 . . . . . . . . . . . 12  |-  ( M : H -1-1-onto-> ( ~P ( J  X.  NN0 )  i^i 
Fin )  ->  M  Fn  H )
18452, 183ax-mp 5 . . . . . . . . . . 11  |-  M  Fn  H
185 dffn5 5924 . . . . . . . . . . 11  |-  ( M  Fn  H  <->  M  =  ( r  e.  H  |->  ( M `  r
) ) )
186184, 185mpbi 213 . . . . . . . . . 10  |-  M  =  ( r  e.  H  |->  ( M `  r
) )
187186a1i 11 . . . . . . . . 9  |-  ( T. 
->  M  =  (
r  e.  H  |->  ( M `  r ) ) )
188 fveq2 5879 . . . . . . . . 9  |-  ( r  =  (bits  o.  (
o  |`  J ) )  ->  ( M `  r )  =  ( M `  (bits  o.  ( o  |`  J ) ) ) )
189182, 171, 187, 188fmptco 6072 . . . . . . . 8  |-  ( T. 
->  ( M  o.  (
o  e.  ( T  i^i  R )  |->  (bits 
o.  ( o  |`  J ) ) ) )  =  ( o  e.  ( T  i^i  R )  |->  ( M `  (bits  o.  ( o  |`  J ) ) ) ) )
190189trud 1461 . . . . . . 7  |-  ( M  o.  ( o  e.  ( T  i^i  R
)  |->  (bits  o.  (
o  |`  J ) ) ) )  =  ( o  e.  ( T  i^i  R )  |->  ( M `  (bits  o.  ( o  |`  J ) ) ) )
191 f1oeq1 5818 . . . . . . 7  |-  ( ( M  o.  ( o  e.  ( T  i^i  R )  |->  (bits  o.  (
o  |`  J ) ) ) )  =  ( o  e.  ( T  i^i  R )  |->  ( M `  (bits  o.  ( o  |`  J ) ) ) )  -> 
( ( M  o.  ( o  e.  ( T  i^i  R ) 
|->  (bits  o.  ( o  |`  J ) ) ) ) : ( T  i^i  R ) -1-1-onto-> ( ~P ( J  X.  NN0 )  i^i  Fin )  <->  ( o  e.  ( T  i^i  R
)  |->  ( M `  (bits  o.  ( o  |`  J ) ) ) ) : ( T  i^i  R ) -1-1-onto-> ( ~P ( J  X.  NN0 )  i^i  Fin ) ) )
192190, 191ax-mp 5 . . . . . 6  |-  ( ( M  o.  ( o  e.  ( T  i^i  R )  |->  (bits  o.  (
o  |`  J ) ) ) ) : ( T  i^i  R ) -1-1-onto-> ( ~P ( J  X.  NN0 )  i^i  Fin )  <->  ( o  e.  ( T  i^i  R )  |->  ( M `  (bits  o.  ( o  |`  J ) ) ) ) : ( T  i^i  R
)
-1-1-onto-> ( ~P ( J  X.  NN0 )  i^i  Fin )
)
193170, 192mpbi 213 . . . . 5  |-  ( o  e.  ( T  i^i  R )  |->  ( M `  (bits  o.  ( o  |`  J ) ) ) ) : ( T  i^i  R ) -1-1-onto-> ( ~P ( J  X.  NN0 )  i^i  Fin )
194 f1oco 5850 . . . . 5  |-  ( ( ( a  e.  ( ~P ( J  X.  NN0 )  i^i  Fin )  |->  ( F " a
) ) : ( ~P ( J  X.  NN0 )  i^i  Fin ) -1-1-onto-> ( ~P NN  i^i  Fin )  /\  ( o  e.  ( T  i^i  R ) 
|->  ( M `  (bits  o.  ( o  |`  J ) ) ) ) : ( T  i^i  R
)
-1-1-onto-> ( ~P ( J  X.  NN0 )  i^i  Fin )
)  ->  ( (
a  e.  ( ~P ( J  X.  NN0 )  i^i  Fin )  |->  ( F " a ) )  o.  ( o  e.  ( T  i^i  R )  |->  ( M `  (bits  o.  ( o  |`  J ) ) ) ) ) : ( T  i^i  R ) -1-1-onto-> ( ~P NN  i^i  Fin ) )
19546, 193, 194mp2an 686 . . . 4  |-  ( ( a  e.  ( ~P ( J  X.  NN0 )  i^i  Fin )  |->  ( F " a ) )  o.  ( o  e.  ( T  i^i  R )  |->  ( M `  (bits  o.  ( o  |`  J ) ) ) ) ) : ( T  i^i  R ) -1-1-onto-> ( ~P NN  i^i  Fin )
196 simpr 468 . . . . . . . . 9  |-  ( ( T.  /\  o  e.  ( T  i^i  R
) )  ->  o  e.  ( T  i^i  R
) )
197 fvex 5889 . . . . . . . . 9  |-  ( M `
 (bits  o.  (
o  |`  J ) ) )  e.  _V
198 eqid 2471 . . . . . . . . . 10  |-  ( o  e.  ( T  i^i  R )  |->  ( M `  (bits  o.  ( o  |`  J ) ) ) )  =  ( o  e.  ( T  i^i  R )  |->  ( M `  (bits  o.  ( o  |`  J ) ) ) )
199198fvmpt2 5972 . . . . . . . . 9  |-  ( ( o  e.  ( T  i^i  R )  /\  ( M `  (bits  o.  ( o  |`  J ) ) )  e.  _V )  ->  ( ( o  e.  ( T  i^i  R )  |->  ( M `  (bits  o.  ( o  |`  J ) ) ) ) `  o )  =  ( M `  (bits  o.  ( o  |`  J ) ) ) )
200196, 197, 199sylancl 675 . . . . . . . 8  |-  ( ( T.  /\  o  e.  ( T  i^i  R
) )  ->  (
( o  e.  ( T  i^i  R ) 
|->  ( M `  (bits  o.  ( o  |`  J ) ) ) ) `  o )  =  ( M `  (bits  o.  ( o  |`  J ) ) ) )
201 f1of 5828 . . . . . . . . . 10  |-  ( ( o  e.  ( T  i^i  R )  |->  ( M `  (bits  o.  ( o  |`  J ) ) ) ) : ( T  i^i  R
)
-1-1-onto-> ( ~P ( J  X.  NN0 )  i^i  Fin )  ->  ( o  e.  ( T  i^i  R ) 
|->  ( M `  (bits  o.  ( o  |`  J ) ) ) ) : ( T  i^i  R
) --> ( ~P ( J  X.  NN0 )  i^i 
Fin ) )
202193, 201mp1i 13 . . . . . . . . 9  |-  ( T. 
->  ( o  e.  ( T  i^i  R ) 
|->  ( M `  (bits  o.  ( o  |`  J ) ) ) ) : ( T  i^i  R
) --> ( ~P ( J  X.  NN0 )  i^i 
Fin ) )
203202ffvelrnda 6037 . . . . . . . 8  |-  ( ( T.  /\  o  e.  ( T  i^i  R
) )  ->  (
( o  e.  ( T  i^i  R ) 
|->  ( M `  (bits  o.  ( o  |`  J ) ) ) ) `  o )  e.  ( ~P ( J  X.  NN0 )  i^i  Fin )
)
204200, 203eqeltrrd 2550 . . . . . . 7  |-  ( ( T.  /\  o  e.  ( T  i^i  R
) )  ->  ( M `  (bits  o.  (
o  |`  J ) ) )  e.  ( ~P ( J  X.  NN0 )  i^i  Fin ) )
205 eqidd 2472 . . . . . . 7  |-  ( T. 
->  ( o  e.  ( T  i^i  R ) 
|->  ( M `  (bits  o.  ( o  |`  J ) ) ) )  =  ( o  e.  ( T  i^i  R ) 
|->  ( M `  (bits  o.  ( o  |`  J ) ) ) ) )
206 eqidd 2472 . . . . . . 7  |-  ( T. 
->  ( a  e.  ( ~P ( J  X.  NN0 )  i^i  Fin )  |->  ( F " a
) )  =  ( a  e.  ( ~P ( J  X.  NN0 )  i^i  Fin )  |->  ( F " a ) ) )
207 imaeq2 5170 . . . . . . 7  |-  ( a  =  ( M `  (bits  o.  ( o  |`  J ) ) )  ->  ( F "
a )  =  ( F " ( M `
 (bits  o.  (
o  |`  J ) ) ) ) )
208204, 205, 206, 207fmptco 6072 . . . . . 6  |-  ( T. 
->  ( ( a  e.  ( ~P ( J  X.  NN0 )  i^i 
Fin )  |->  ( F
" a ) )  o.  ( o  e.  ( T  i^i  R
)  |->  ( M `  (bits  o.  ( o  |`  J ) ) ) ) )  =  ( o  e.  ( T  i^i  R )  |->  ( F " ( M `
 (bits  o.  (
o  |`  J ) ) ) ) ) )
209208trud 1461 . . . . 5  |-  ( ( a  e.  ( ~P ( J  X.  NN0 )  i^i  Fin )  |->  ( F " a ) )  o.  ( o  e.  ( T  i^i  R )  |->  ( M `  (bits  o.  ( o  |`  J ) ) ) ) )  =  ( o  e.  ( T  i^i  R )  |->  ( F " ( M `
 (bits  o.  (
o  |`  J ) ) ) ) )
210 f1oeq1 5818 . . . . 5  |-  ( ( ( a  e.  ( ~P ( J  X.  NN0 )  i^i  Fin )  |->  ( F " a
) )  o.  (
o  e.  ( T  i^i  R )  |->  ( M `  (bits  o.  ( o  |`  J ) ) ) ) )  =  ( o  e.  ( T  i^i  R
)  |->  ( F "
( M `  (bits  o.  ( o  |`  J ) ) ) ) )  ->  ( ( ( a  e.  ( ~P ( J  X.  NN0 )  i^i  Fin )  |->  ( F " a ) )  o.  ( o  e.  ( T  i^i  R )  |->  ( M `  (bits  o.  ( o  |`  J ) ) ) ) ) : ( T  i^i  R ) -1-1-onto-> ( ~P NN  i^i  Fin ) 
<->  ( o  e.  ( T  i^i  R ) 
|->  ( F " ( M `  (bits  o.  (
o  |`  J ) ) ) ) ) : ( T  i^i  R
)
-1-1-onto-> ( ~P NN  i^i  Fin ) ) )
211209, 210ax-mp 5 . . . 4  |-  ( ( ( a  e.  ( ~P ( J  X.  NN0 )  i^i  Fin )  |->  ( F " a
) )  o.  (
o  e.  ( T  i^i  R )  |->  ( M `  (bits  o.  ( o  |`  J ) ) ) ) ) : ( T  i^i  R ) -1-1-onto-> ( ~P NN  i^i  Fin )  <->  ( o  e.  ( T  i^i  R
)  |->  ( F "
( M `  (bits  o.  ( o  |`  J ) ) ) ) ) : ( T  i^i  R ) -1-1-onto-> ( ~P NN  i^i  Fin ) )
212195, 211mpbi 213 . . 3  |-  ( o  e.  ( T  i^i  R )  |->  ( F "
( M `  (bits  o.  ( o  |`  J ) ) ) ) ) : ( T  i^i  R ) -1-1-onto-> ( ~P NN  i^i  Fin )
213 f1oco 5850 . . 3  |-  ( ( ( (𝟭 `  NN )  |`  Fin ) : ( ~P NN  i^i  Fin ) -1-1-onto-> ( ( { 0 ,  1 }  ^m  NN )  i^i  R )  /\  ( o  e.  ( T  i^i  R
)  |->  ( F "
( M `  (bits  o.  ( o  |`  J ) ) ) ) ) : ( T  i^i  R ) -1-1-onto-> ( ~P NN  i^i  Fin ) )  ->  (
( (𝟭 `  NN )  |` 
Fin )  o.  (
o  e.  ( T  i^i  R )  |->  ( F " ( M `
 (bits  o.  (
o  |`  J ) ) ) ) ) ) : ( T  i^i  R ) -1-1-onto-> ( ( { 0 ,  1 }  ^m  NN )  i^i  R ) )
21441, 212, 213mp2an 686 . 2  |-  ( ( (𝟭 `  NN )  |` 
Fin )  o.  (
o  e.  ( T  i^i  R )  |->  ( F " ( M `
 (bits  o.  (
o  |`  J ) ) ) ) ) ) : ( T  i^i  R ) -1-1-onto-> ( ( { 0 ,  1 }  ^m  NN )  i^i  R )
215 eulerpart.g . . . 4  |-  G  =  ( o  e.  ( T  i^i  R ) 
|->  ( (𝟭 `  NN ) `  ( F " ( M `  (bits  o.  ( o  |`  J ) ) ) ) ) )
21643mpt2exg 6887 . . . . . . . . . 10  |-  ( ( J  e.  _V  /\  NN0 
e.  _V )  ->  F  e.  _V )
21755, 57, 216mp2an 686 . . . . . . . . 9  |-  F  e. 
_V
218 imaexg 6749 . . . . . . . . 9  |-  ( F  e.  _V  ->  ( F " ( M `  (bits  o.  ( o  |`  J ) ) ) )  e.  _V )
219217, 218ax-mp 5 . . . . . . . 8  |-  ( F
" ( M `  (bits  o.  ( o  |`  J ) ) ) )  e.  _V
220 eqid 2471 . . . . . . . . 9  |-  ( o  e.  ( T  i^i  R )  |->  ( F "
( M `  (bits  o.  ( o  |`  J ) ) ) ) )  =  ( o  e.  ( T  i^i  R
)  |->  ( F "
( M `  (bits  o.  ( o  |`  J ) ) ) ) )
221220fvmpt2 5972 . . . . . . . 8  |-  ( ( o  e.  ( T  i^i  R )  /\  ( F " ( M `
 (bits  o.  (
o  |`  J ) ) ) )  e.  _V )  ->  ( ( o  e.  ( T  i^i  R )  |->  ( F "
( M `  (bits  o.  ( o  |`  J ) ) ) ) ) `
 o )  =  ( F " ( M `  (bits  o.  (
o  |`  J ) ) ) ) )
222196, 219, 221sylancl 675 . . . . . . 7  |-  ( ( T.  /\  o  e.  ( T  i^i  R
) )  ->  (
( o  e.  ( T  i^i  R ) 
|->  ( F " ( M `  (bits  o.  (
o  |`  J ) ) ) ) ) `  o )  =  ( F " ( M `
 (bits  o.  (
o  |`  J ) ) ) ) )
223 f1of 5828 . . . . . . . . 9  |-  ( ( o  e.  ( T  i^i  R )  |->  ( F " ( M `
 (bits  o.  (
o  |`  J ) ) ) ) ) : ( T  i^i  R
)
-1-1-onto-> ( ~P NN  i^i  Fin )  ->  ( o  e.  ( T  i^i  R
)  |->  ( F "
( M `  (bits  o.  ( o  |`  J ) ) ) ) ) : ( T  i^i  R ) --> ( ~P NN  i^i  Fin ) )
224212, 223mp1i 13 . . . . . . . 8  |-  ( T. 
->  ( o  e.  ( T  i^i  R ) 
|->  ( F " ( M `  (bits  o.  (
o  |`  J ) ) ) ) ) : ( T  i^i  R
) --> ( ~P NN  i^i  Fin ) )
225224ffvelrnda 6037 . . . . . . 7  |-  ( ( T.  /\  o  e.  ( T  i^i  R
) )  ->  (
( o  e.  ( T  i^i  R ) 
|->  ( F " ( M `  (bits  o.  (
o  |`  J ) ) ) ) ) `  o )  e.  ( ~P NN  i^i  Fin ) )
226222, 225eqeltrrd 2550 . . . . . 6  |-  ( ( T.  /\  o  e.  ( T  i^i  R
) )  ->  ( F " ( M `  (bits  o.  ( o  |`  J ) ) ) )  e.  ( ~P NN  i^i  Fin )
)
227 eqidd 2472 . . . . . 6  |-  ( T. 
->  ( o  e.  ( T  i^i  R ) 
|->  ( F " ( M `  (bits  o.  (
o  |`  J ) ) ) ) )  =  ( o  e.  ( T  i^i  R ) 
|->  ( F " ( M `  (bits  o.  (
o  |`  J ) ) ) ) ) )
228 indf1o 28919 . . . . . . . . . . 11  |-  ( NN  e.  _V  ->  (𝟭 `  NN ) : ~P NN
-1-1-onto-> ( { 0 ,  1 }  ^m  NN ) )
229 f1ofn 5829 . . . . . . . . . . 11  |-  ( (𝟭 `  NN ) : ~P NN
-1-1-onto-> ( { 0 ,  1 }  ^m  NN )  ->  (𝟭 `  NN )  Fn  ~P NN )
2301, 228, 229mp2b 10 . . . . . . . . . 10  |-  (𝟭 `  NN )  Fn  ~P NN
231 dffn5 5924 . . . . . . . . . 10  |-  ( (𝟭 `  NN )  Fn  ~P NN 
<->  (𝟭 `  NN )  =  ( b  e. 
~P NN  |->  ( (𝟭 `  NN ) `  b
) ) )
232230, 231mpbi 213 . . . . . . . . 9  |-  (𝟭 `  NN )  =  ( b  e.  ~P NN  |->  ( (𝟭 `  NN ) `  b
) )
233232reseq1i 5107 . . . . . . . 8  |-  ( (𝟭 `  NN )  |`  Fin )  =  ( ( b  e.  ~P NN  |->  ( (𝟭 `  NN ) `  b ) )  |`  Fin )
234 resmpt3 5161 . . . . . . . 8  |-  ( ( b  e.  ~P NN  |->  ( (𝟭 `  NN ) `  b ) )  |`  Fin )  =  (
b  e.  ( ~P NN  i^i  Fin )  |->  ( (𝟭 `  NN ) `  b )
)
235233, 234eqtri 2493 . . . . . . 7  |-  ( (𝟭 `  NN )  |`  Fin )  =  ( b  e.  ( ~P NN  i^i  Fin )  |->  ( (𝟭 `  NN ) `  b )
)
236235a1i 11 . . . . . 6  |-  ( T. 
->  ( (𝟭 `  NN )  |`  Fin )  =  ( b  e.  ( ~P NN  i^i  Fin )  |->  ( (𝟭 `  NN ) `  b )
) )
237 fveq2 5879 . . . . . 6  |-  ( b  =  ( F "
( M `  (bits  o.  ( o  |`  J ) ) ) )  -> 
( (𝟭 `  NN ) `  b )  =  ( (𝟭 `  NN ) `  ( F " ( M `  (bits  o.  (
o  |`  J ) ) ) ) ) )
238226, 227, 236, 237fmptco 6072 . . . . 5  |-  ( T. 
->  ( ( (𝟭 `  NN )  |`  Fin )  o.  ( o  e.  ( T  i^i  R ) 
|->  ( F " ( M `  (bits  o.  (
o  |`  J ) ) ) ) ) )  =  ( o  e.  ( T  i^i  R
)  |->  ( (𝟭 `  NN ) `  ( F " ( M `  (bits  o.  ( o  |`  J ) ) ) ) ) ) )
239238trud 1461 . . . 4  |-  ( ( (𝟭 `  NN )  |` 
Fin )  o.  (
o  e.  ( T  i^i  R )  |->  ( F " ( M `
 (bits  o.  (
o  |`  J ) ) ) ) ) )  =  ( o  e.  ( T  i^i  R
)  |->  ( (𝟭 `  NN ) `  ( F " ( M `  (bits  o.  ( o  |`  J ) ) ) ) ) )
240215, 239eqtr4i 2496 . . 3  |-  G  =  ( ( (𝟭 `  NN )  |`  Fin )  o.  ( o  e.  ( T  i^i  R ) 
|->  ( F " ( M `  (bits  o.  (
o  |`  J ) ) ) ) ) )
241 f1oeq1 5818 . . 3  |-  ( G  =  ( ( (𝟭 `  NN )  |`  Fin )  o.  ( o  e.  ( T  i^i  R ) 
|->  ( F " ( M `  (bits  o.  (
o  |`  J ) ) ) ) ) )  ->  ( G :
( T  i^i  R
)
-1-1-onto-> ( ( { 0 ,  1 }  ^m  NN )  i^i  R )  <-> 
( ( (𝟭 `  NN )  |`  Fin )  o.  ( o  e.  ( T  i^i  R ) 
|->  ( F " ( M `  (bits  o.  (
o  |`  J ) ) ) ) ) ) : ( T  i^i  R ) -1-1-onto-> ( ( { 0 ,  1 }  ^m  NN )  i^i  R ) ) )
242240, 241ax-mp 5 . 2  |-  ( G : ( T  i^i  R ) -1-1-onto-> ( ( { 0 ,  1 }  ^m  NN )  i^i  R )  <-> 
( ( (𝟭 `  NN )  |`  Fin )  o.  ( o  e.  ( T  i^i  R ) 
|->  ( F " ( M `  (bits  o.  (
o  |`  J ) ) ) ) ) ) : ( T  i^i  R ) -1-1-onto-> ( ( { 0 ,  1 }  ^m  NN )  i^i  R ) )
243214, 242mpbir 214 1  |-  G :
( T  i^i  R
)
-1-1-onto-> ( ( { 0 ,  1 }  ^m  NN )  i^i  R )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 189    /\ wa 376    /\ w3a 1007    = wceq 1452   T. wtru 1453    e. wcel 1904   {cab 2457   A.wral 2756   E.wrex 2757   {crab 2760   _Vcvv 3031    \ cdif 3387    u. cun 3388    i^i cin 3389    C_ wss 3390   (/)c0 3722   ~Pcpw 3942   {csn 3959   {cpr 3961   class class class wbr 4395   {copab 4453    |-> cmpt 4454    X. cxp 4837   `'ccnv 4838   ran crn 4840    |` cres 4841   "cima 4842    o. ccom 4843   Fun wfun 5583    Fn wfn 5584   -->wf 5585   -1-1->wf1 5586   -1-1-onto->wf1o 5588   ` cfv 5589  (class class class)co 6308    |-> cmpt2 6310   supp csupp 6933    ^m cmap 7490   Fincfn 7587   finSupp cfsupp 7901   0cc0 9557   1c1 9558    x. cmul 9562    <_ cle 9694   NNcn 10631   2c2 10681   NN0cn0 10893   ZZcz 10961   ^cexp 12310   sum_csu 13829    || cdvds 14382  bitscbits 14471  𝟭cind 28906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-inf2 8164  ax-ac2 8911  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634  ax-pre-sup 9635
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-fal 1458  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-disj 4367  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-se 4799  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-isom 5598  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-1st 6812  df-2nd 6813  df-supp 6934  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-2o 7201  df-oadd 7204  df-er 7381  df-map 7492  df-pm 7493  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-fsupp 7902  df-sup 7974  df-inf 7975  df-oi 8043  df-card 8391  df-acn 8394  df-ac 8565  df-cda 8616  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-div 10292  df-nn 10632  df-2 10690  df-3 10691  df-n0 10894  df-z 10962  df-uz 11183  df-rp 11326  df-fz 11811  df-fzo 11943  df-fl 12061  df-mod 12130  df-seq 12252  df-exp 12311  df-hash 12554  df-cj 13239  df-re 13240  df-im 13241  df-sqrt 13375  df-abs 13376  df-clim 13629  df-sum 13830  df-dvds 14383  df-bits 14474  df-ind 28907
This theorem is referenced by:  eulerpartlemgf  29285  eulerpartlemgs2  29286  eulerpartlemn  29287
  Copyright terms: Public domain W3C validator