MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eujust Structured version   Unicode version

Theorem eujust 2240
Description: A soundness justification theorem for df-eu 2242, showing that the definition is equivalent to itself with its dummy variable renamed. Note that  y and  z needn't be distinct variables. See eujustALT 2241 for a proof that provides an example of how it can be achieved through the use of dvelim 2105. (Contributed by NM, 11-Mar-2010.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
eujust  |-  ( E. y A. x (
ph 
<->  x  =  y )  <->  E. z A. x (
ph 
<->  x  =  z ) )
Distinct variable groups:    x, y    x, z    ph, y    ph, z
Allowed substitution hint:    ph( x)

Proof of Theorem eujust
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 equequ2 1823 . . . . 5  |-  ( y  =  w  ->  (
x  =  y  <->  x  =  w ) )
21bibi2d 316 . . . 4  |-  ( y  =  w  ->  (
( ph  <->  x  =  y
)  <->  ( ph  <->  x  =  w ) ) )
32albidv 1734 . . 3  |-  ( y  =  w  ->  ( A. x ( ph  <->  x  =  y )  <->  A. x
( ph  <->  x  =  w
) ) )
43cbvexv 2051 . 2  |-  ( E. y A. x (
ph 
<->  x  =  y )  <->  E. w A. x (
ph 
<->  x  =  w ) )
5 equequ2 1823 . . . . 5  |-  ( w  =  z  ->  (
x  =  w  <->  x  =  z ) )
65bibi2d 316 . . . 4  |-  ( w  =  z  ->  (
( ph  <->  x  =  w
)  <->  ( ph  <->  x  =  z ) ) )
76albidv 1734 . . 3  |-  ( w  =  z  ->  ( A. x ( ph  <->  x  =  w )  <->  A. x
( ph  <->  x  =  z
) ) )
87cbvexv 2051 . 2  |-  ( E. w A. x (
ph 
<->  x  =  w )  <->  E. z A. x (
ph 
<->  x  =  z ) )
94, 8bitri 249 1  |-  ( E. y A. x (
ph 
<->  x  =  y )  <->  E. z A. x (
ph 
<->  x  =  z ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184   A.wal 1403   E.wex 1633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026
This theorem depends on definitions:  df-bi 185  df-an 369  df-ex 1634  df-nf 1638
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator