MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eufnfv Structured version   Unicode version

Theorem eufnfv 6121
Description: A function is uniquely determined by its values. (Contributed by NM, 31-Aug-2011.)
Hypotheses
Ref Expression
eufnfv.1  |-  A  e. 
_V
eufnfv.2  |-  B  e. 
_V
Assertion
Ref Expression
eufnfv  |-  E! f ( f  Fn  A  /\  A. x  e.  A  ( f `  x
)  =  B )
Distinct variable groups:    x, f, A    B, f
Allowed substitution hint:    B( x)

Proof of Theorem eufnfv
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 eufnfv.1 . . . . 5  |-  A  e. 
_V
21mptex 6118 . . . 4  |-  ( x  e.  A  |->  B )  e.  _V
3 eqeq2 2469 . . . . . 6  |-  ( z  =  ( x  e.  A  |->  B )  -> 
( f  =  z  <-> 
f  =  ( x  e.  A  |->  B ) ) )
43bibi2d 316 . . . . 5  |-  ( z  =  ( x  e.  A  |->  B )  -> 
( ( ( f  Fn  A  /\  A. x  e.  A  (
f `  x )  =  B )  <->  f  =  z )  <->  ( (
f  Fn  A  /\  A. x  e.  A  ( f `  x )  =  B )  <->  f  =  ( x  e.  A  |->  B ) ) ) )
54albidv 1718 . . . 4  |-  ( z  =  ( x  e.  A  |->  B )  -> 
( A. f ( ( f  Fn  A  /\  A. x  e.  A  ( f `  x
)  =  B )  <-> 
f  =  z )  <->  A. f ( ( f  Fn  A  /\  A. x  e.  A  (
f `  x )  =  B )  <->  f  =  ( x  e.  A  |->  B ) ) ) )
62, 5spcev 3198 . . 3  |-  ( A. f ( ( f  Fn  A  /\  A. x  e.  A  (
f `  x )  =  B )  <->  f  =  ( x  e.  A  |->  B ) )  ->  E. z A. f ( ( f  Fn  A  /\  A. x  e.  A  ( f `  x
)  =  B )  <-> 
f  =  z ) )
7 eufnfv.2 . . . . . . 7  |-  B  e. 
_V
8 eqid 2454 . . . . . . 7  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
97, 8fnmpti 5691 . . . . . 6  |-  ( x  e.  A  |->  B )  Fn  A
10 fneq1 5651 . . . . . 6  |-  ( f  =  ( x  e.  A  |->  B )  -> 
( f  Fn  A  <->  ( x  e.  A  |->  B )  Fn  A ) )
119, 10mpbiri 233 . . . . 5  |-  ( f  =  ( x  e.  A  |->  B )  -> 
f  Fn  A )
1211pm4.71ri 631 . . . 4  |-  ( f  =  ( x  e.  A  |->  B )  <->  ( f  Fn  A  /\  f  =  ( x  e.  A  |->  B ) ) )
13 dffn5 5893 . . . . . . 7  |-  ( f  Fn  A  <->  f  =  ( x  e.  A  |->  ( f `  x
) ) )
14 eqeq1 2458 . . . . . . 7  |-  ( f  =  ( x  e.  A  |->  ( f `  x ) )  -> 
( f  =  ( x  e.  A  |->  B )  <->  ( x  e.  A  |->  ( f `  x ) )  =  ( x  e.  A  |->  B ) ) )
1513, 14sylbi 195 . . . . . 6  |-  ( f  Fn  A  ->  (
f  =  ( x  e.  A  |->  B )  <-> 
( x  e.  A  |->  ( f `  x
) )  =  ( x  e.  A  |->  B ) ) )
16 fvex 5858 . . . . . . . 8  |-  ( f `
 x )  e. 
_V
1716rgenw 2815 . . . . . . 7  |-  A. x  e.  A  ( f `  x )  e.  _V
18 mpteqb 5946 . . . . . . 7  |-  ( A. x  e.  A  (
f `  x )  e.  _V  ->  ( (
x  e.  A  |->  ( f `  x ) )  =  ( x  e.  A  |->  B )  <->  A. x  e.  A  ( f `  x
)  =  B ) )
1917, 18ax-mp 5 . . . . . 6  |-  ( ( x  e.  A  |->  ( f `  x ) )  =  ( x  e.  A  |->  B )  <->  A. x  e.  A  ( f `  x
)  =  B )
2015, 19syl6bb 261 . . . . 5  |-  ( f  Fn  A  ->  (
f  =  ( x  e.  A  |->  B )  <->  A. x  e.  A  ( f `  x
)  =  B ) )
2120pm5.32i 635 . . . 4  |-  ( ( f  Fn  A  /\  f  =  ( x  e.  A  |->  B ) )  <->  ( f  Fn  A  /\  A. x  e.  A  ( f `  x )  =  B ) )
2212, 21bitr2i 250 . . 3  |-  ( ( f  Fn  A  /\  A. x  e.  A  ( f `  x )  =  B )  <->  f  =  ( x  e.  A  |->  B ) )
236, 22mpg 1625 . 2  |-  E. z A. f ( ( f  Fn  A  /\  A. x  e.  A  (
f `  x )  =  B )  <->  f  =  z )
24 df-eu 2288 . 2  |-  ( E! f ( f  Fn  A  /\  A. x  e.  A  ( f `  x )  =  B )  <->  E. z A. f
( ( f  Fn  A  /\  A. x  e.  A  ( f `  x )  =  B )  <->  f  =  z ) )
2523, 24mpbir 209 1  |-  E! f ( f  Fn  A  /\  A. x  e.  A  ( f `  x
)  =  B )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 367   A.wal 1396    = wceq 1398   E.wex 1617    e. wcel 1823   E!weu 2284   A.wral 2804   _Vcvv 3106    |-> cmpt 4497    Fn wfn 5565   ` cfv 5570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-reu 2811  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-id 4784  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator