MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eufnfv Structured version   Unicode version

Theorem eufnfv 6052
Description: A function is uniquely determined by its values. (Contributed by NM, 31-Aug-2011.)
Hypotheses
Ref Expression
eufnfv.1  |-  A  e. 
_V
eufnfv.2  |-  B  e. 
_V
Assertion
Ref Expression
eufnfv  |-  E! f ( f  Fn  A  /\  A. x  e.  A  ( f `  x
)  =  B )
Distinct variable groups:    x, f, A    B, f
Allowed substitution hint:    B( x)

Proof of Theorem eufnfv
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 eufnfv.1 . . . . 5  |-  A  e. 
_V
21mptex 6049 . . . 4  |-  ( x  e.  A  |->  B )  e.  _V
3 eqeq2 2466 . . . . . 6  |-  ( z  =  ( x  e.  A  |->  B )  -> 
( f  =  z  <-> 
f  =  ( x  e.  A  |->  B ) ) )
43bibi2d 318 . . . . 5  |-  ( z  =  ( x  e.  A  |->  B )  -> 
( ( ( f  Fn  A  /\  A. x  e.  A  (
f `  x )  =  B )  <->  f  =  z )  <->  ( (
f  Fn  A  /\  A. x  e.  A  ( f `  x )  =  B )  <->  f  =  ( x  e.  A  |->  B ) ) ) )
54albidv 1680 . . . 4  |-  ( z  =  ( x  e.  A  |->  B )  -> 
( A. f ( ( f  Fn  A  /\  A. x  e.  A  ( f `  x
)  =  B )  <-> 
f  =  z )  <->  A. f ( ( f  Fn  A  /\  A. x  e.  A  (
f `  x )  =  B )  <->  f  =  ( x  e.  A  |->  B ) ) ) )
62, 5spcev 3162 . . 3  |-  ( A. f ( ( f  Fn  A  /\  A. x  e.  A  (
f `  x )  =  B )  <->  f  =  ( x  e.  A  |->  B ) )  ->  E. z A. f ( ( f  Fn  A  /\  A. x  e.  A  ( f `  x
)  =  B )  <-> 
f  =  z ) )
7 eufnfv.2 . . . . . . 7  |-  B  e. 
_V
8 eqid 2451 . . . . . . 7  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
97, 8fnmpti 5639 . . . . . 6  |-  ( x  e.  A  |->  B )  Fn  A
10 fneq1 5599 . . . . . 6  |-  ( f  =  ( x  e.  A  |->  B )  -> 
( f  Fn  A  <->  ( x  e.  A  |->  B )  Fn  A ) )
119, 10mpbiri 233 . . . . 5  |-  ( f  =  ( x  e.  A  |->  B )  -> 
f  Fn  A )
1211pm4.71ri 633 . . . 4  |-  ( f  =  ( x  e.  A  |->  B )  <->  ( f  Fn  A  /\  f  =  ( x  e.  A  |->  B ) ) )
13 dffn5 5838 . . . . . . 7  |-  ( f  Fn  A  <->  f  =  ( x  e.  A  |->  ( f `  x
) ) )
14 eqeq1 2455 . . . . . . 7  |-  ( f  =  ( x  e.  A  |->  ( f `  x ) )  -> 
( f  =  ( x  e.  A  |->  B )  <->  ( x  e.  A  |->  ( f `  x ) )  =  ( x  e.  A  |->  B ) ) )
1513, 14sylbi 195 . . . . . 6  |-  ( f  Fn  A  ->  (
f  =  ( x  e.  A  |->  B )  <-> 
( x  e.  A  |->  ( f `  x
) )  =  ( x  e.  A  |->  B ) ) )
16 fvex 5801 . . . . . . . 8  |-  ( f `
 x )  e. 
_V
1716rgenw 2893 . . . . . . 7  |-  A. x  e.  A  ( f `  x )  e.  _V
18 mpteqb 5889 . . . . . . 7  |-  ( A. x  e.  A  (
f `  x )  e.  _V  ->  ( (
x  e.  A  |->  ( f `  x ) )  =  ( x  e.  A  |->  B )  <->  A. x  e.  A  ( f `  x
)  =  B ) )
1917, 18ax-mp 5 . . . . . 6  |-  ( ( x  e.  A  |->  ( f `  x ) )  =  ( x  e.  A  |->  B )  <->  A. x  e.  A  ( f `  x
)  =  B )
2015, 19syl6bb 261 . . . . 5  |-  ( f  Fn  A  ->  (
f  =  ( x  e.  A  |->  B )  <->  A. x  e.  A  ( f `  x
)  =  B ) )
2120pm5.32i 637 . . . 4  |-  ( ( f  Fn  A  /\  f  =  ( x  e.  A  |->  B ) )  <->  ( f  Fn  A  /\  A. x  e.  A  ( f `  x )  =  B ) )
2212, 21bitr2i 250 . . 3  |-  ( ( f  Fn  A  /\  A. x  e.  A  ( f `  x )  =  B )  <->  f  =  ( x  e.  A  |->  B ) )
236, 22mpg 1594 . 2  |-  E. z A. f ( ( f  Fn  A  /\  A. x  e.  A  (
f `  x )  =  B )  <->  f  =  z )
24 df-eu 2264 . 2  |-  ( E! f ( f  Fn  A  /\  A. x  e.  A  ( f `  x )  =  B )  <->  E. z A. f
( ( f  Fn  A  /\  A. x  e.  A  ( f `  x )  =  B )  <->  f  =  z ) )
2523, 24mpbir 209 1  |-  E! f ( f  Fn  A  /\  A. x  e.  A  ( f `  x
)  =  B )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369   A.wal 1368    = wceq 1370   E.wex 1587    e. wcel 1758   E!weu 2260   A.wral 2795   _Vcvv 3070    |-> cmpt 4450    Fn wfn 5513   ` cfv 5518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4503  ax-sep 4513  ax-nul 4521  ax-pow 4570  ax-pr 4631
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-reu 2802  df-rab 2804  df-v 3072  df-sbc 3287  df-csb 3389  df-dif 3431  df-un 3433  df-in 3435  df-ss 3442  df-nul 3738  df-if 3892  df-sn 3978  df-pr 3980  df-op 3984  df-uni 4192  df-iun 4273  df-br 4393  df-opab 4451  df-mpt 4452  df-id 4736  df-xp 4946  df-rel 4947  df-cnv 4948  df-co 4949  df-dm 4950  df-rn 4951  df-res 4952  df-ima 4953  df-iota 5481  df-fun 5520  df-fn 5521  df-f 5522  df-f1 5523  df-fo 5524  df-f1o 5525  df-fv 5526
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator