Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  eufOLD Structured version   Unicode version

Theorem eufOLD 2273
 Description: Obsolete proof of euf 2272 as of 30-Oct-2018. (Contributed by NM, 12-Aug-1993.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
euf.1
Assertion
Ref Expression
eufOLD
Distinct variable group:   ,
Allowed substitution hints:   (,)

Proof of Theorem eufOLD
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 df-eu 2266 . 2
2 euf.1 . . . . 5
3 nfv 1674 . . . . 5
42, 3nfbi 1872 . . . 4
54nfal 1885 . . 3
6 nfv 1674 . . . . 5
7 nfv 1674 . . . . 5
86, 7nfbi 1872 . . . 4
98nfal 1885 . . 3
10 equequ2 1739 . . . . 5
1110bibi2d 318 . . . 4
1211albidv 1680 . . 3
135, 9, 12cbvex 1982 . 2
141, 13bitri 249 1
 Colors of variables: wff setvar class Syntax hints:   wb 184  wal 1368  wex 1587  wnf 1590  weu 2262 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955 This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1373  df-ex 1588  df-nf 1591  df-eu 2266 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator