MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eueq3 Structured version   Unicode version

Theorem eueq3 3233
Description: Equality has existential uniqueness (split into 3 cases). (Contributed by NM, 5-Apr-1995.) (Proof shortened by Mario Carneiro, 28-Sep-2015.)
Hypotheses
Ref Expression
eueq3.1  |-  A  e. 
_V
eueq3.2  |-  B  e. 
_V
eueq3.3  |-  C  e. 
_V
eueq3.4  |-  -.  ( ph  /\  ps )
Assertion
Ref Expression
eueq3  |-  E! x
( ( ph  /\  x  =  A )  \/  ( -.  ( ph  \/  ps )  /\  x  =  B )  \/  ( ps  /\  x  =  C ) )
Distinct variable groups:    ph, x    ps, x    x, A    x, B    x, C

Proof of Theorem eueq3
StepHypRef Expression
1 eueq3.1 . . . 4  |-  A  e. 
_V
21eueq1 3231 . . 3  |-  E! x  x  =  A
3 ibar 504 . . . . . 6  |-  ( ph  ->  ( x  =  A  <-> 
( ph  /\  x  =  A ) ) )
4 pm2.45 397 . . . . . . . . . 10  |-  ( -.  ( ph  \/  ps )  ->  -.  ph )
5 eueq3.4 . . . . . . . . . . . 12  |-  -.  ( ph  /\  ps )
65imnani 423 . . . . . . . . . . 11  |-  ( ph  ->  -.  ps )
76con2i 120 . . . . . . . . . 10  |-  ( ps 
->  -.  ph )
84, 7jaoi 379 . . . . . . . . 9  |-  ( ( -.  ( ph  \/  ps )  \/  ps )  ->  -.  ph )
98con2i 120 . . . . . . . 8  |-  ( ph  ->  -.  ( -.  ( ph  \/  ps )  \/ 
ps ) )
104con2i 120 . . . . . . . . . 10  |-  ( ph  ->  -.  -.  ( ph  \/  ps ) )
1110bianfd 917 . . . . . . . . 9  |-  ( ph  ->  ( -.  ( ph  \/  ps )  <->  ( -.  ( ph  \/  ps )  /\  x  =  B
) ) )
126bianfd 917 . . . . . . . . 9  |-  ( ph  ->  ( ps  <->  ( ps  /\  x  =  C ) ) )
1311, 12orbi12d 709 . . . . . . . 8  |-  ( ph  ->  ( ( -.  ( ph  \/  ps )  \/ 
ps )  <->  ( ( -.  ( ph  \/  ps )  /\  x  =  B )  \/  ( ps 
/\  x  =  C ) ) ) )
149, 13mtbid 300 . . . . . . 7  |-  ( ph  ->  -.  ( ( -.  ( ph  \/  ps )  /\  x  =  B )  \/  ( ps 
/\  x  =  C ) ) )
15 biorf 405 . . . . . . 7  |-  ( -.  ( ( -.  ( ph  \/  ps )  /\  x  =  B )  \/  ( ps  /\  x  =  C ) )  -> 
( ( ph  /\  x  =  A )  <->  ( ( ( -.  ( ph  \/  ps )  /\  x  =  B )  \/  ( ps  /\  x  =  C ) )  \/  ( ph  /\  x  =  A ) ) ) )
1614, 15syl 16 . . . . . 6  |-  ( ph  ->  ( ( ph  /\  x  =  A )  <->  ( ( ( -.  ( ph  \/  ps )  /\  x  =  B )  \/  ( ps  /\  x  =  C ) )  \/  ( ph  /\  x  =  A ) ) ) )
173, 16bitrd 253 . . . . 5  |-  ( ph  ->  ( x  =  A  <-> 
( ( ( -.  ( ph  \/  ps )  /\  x  =  B )  \/  ( ps 
/\  x  =  C ) )  \/  ( ph  /\  x  =  A ) ) ) )
18 3orrot 971 . . . . . 6  |-  ( ( ( ph  /\  x  =  A )  \/  ( -.  ( ph  \/  ps )  /\  x  =  B )  \/  ( ps 
/\  x  =  C ) )  <->  ( ( -.  ( ph  \/  ps )  /\  x  =  B )  \/  ( ps 
/\  x  =  C )  \/  ( ph  /\  x  =  A ) ) )
19 df-3or 966 . . . . . 6  |-  ( ( ( -.  ( ph  \/  ps )  /\  x  =  B )  \/  ( ps  /\  x  =  C )  \/  ( ph  /\  x  =  A ) )  <->  ( ( ( -.  ( ph  \/  ps )  /\  x  =  B )  \/  ( ps  /\  x  =  C ) )  \/  ( ph  /\  x  =  A ) ) )
2018, 19bitri 249 . . . . 5  |-  ( ( ( ph  /\  x  =  A )  \/  ( -.  ( ph  \/  ps )  /\  x  =  B )  \/  ( ps 
/\  x  =  C ) )  <->  ( (
( -.  ( ph  \/  ps )  /\  x  =  B )  \/  ( ps  /\  x  =  C ) )  \/  ( ph  /\  x  =  A ) ) )
2117, 20syl6bbr 263 . . . 4  |-  ( ph  ->  ( x  =  A  <-> 
( ( ph  /\  x  =  A )  \/  ( -.  ( ph  \/  ps )  /\  x  =  B )  \/  ( ps  /\  x  =  C ) ) ) )
2221eubidv 2283 . . 3  |-  ( ph  ->  ( E! x  x  =  A  <->  E! x
( ( ph  /\  x  =  A )  \/  ( -.  ( ph  \/  ps )  /\  x  =  B )  \/  ( ps  /\  x  =  C ) ) ) )
232, 22mpbii 211 . 2  |-  ( ph  ->  E! x ( (
ph  /\  x  =  A )  \/  ( -.  ( ph  \/  ps )  /\  x  =  B )  \/  ( ps 
/\  x  =  C ) ) )
24 eueq3.3 . . . 4  |-  C  e. 
_V
2524eueq1 3231 . . 3  |-  E! x  x  =  C
26 ibar 504 . . . . . 6  |-  ( ps 
->  ( x  =  C  <-> 
( ps  /\  x  =  C ) ) )
276adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  x  =  A )  ->  -.  ps )
28 pm2.46 398 . . . . . . . . . 10  |-  ( -.  ( ph  \/  ps )  ->  -.  ps )
2928adantr 465 . . . . . . . . 9  |-  ( ( -.  ( ph  \/  ps )  /\  x  =  B )  ->  -.  ps )
3027, 29jaoi 379 . . . . . . . 8  |-  ( ( ( ph  /\  x  =  A )  \/  ( -.  ( ph  \/  ps )  /\  x  =  B ) )  ->  -.  ps )
3130con2i 120 . . . . . . 7  |-  ( ps 
->  -.  ( ( ph  /\  x  =  A )  \/  ( -.  ( ph  \/  ps )  /\  x  =  B )
) )
32 biorf 405 . . . . . . 7  |-  ( -.  ( ( ph  /\  x  =  A )  \/  ( -.  ( ph  \/  ps )  /\  x  =  B ) )  -> 
( ( ps  /\  x  =  C )  <->  ( ( ( ph  /\  x  =  A )  \/  ( -.  ( ph  \/  ps )  /\  x  =  B ) )  \/  ( ps  /\  x  =  C ) ) ) )
3331, 32syl 16 . . . . . 6  |-  ( ps 
->  ( ( ps  /\  x  =  C )  <->  ( ( ( ph  /\  x  =  A )  \/  ( -.  ( ph  \/  ps )  /\  x  =  B ) )  \/  ( ps  /\  x  =  C ) ) ) )
3426, 33bitrd 253 . . . . 5  |-  ( ps 
->  ( x  =  C  <-> 
( ( ( ph  /\  x  =  A )  \/  ( -.  ( ph  \/  ps )  /\  x  =  B )
)  \/  ( ps 
/\  x  =  C ) ) ) )
35 df-3or 966 . . . . 5  |-  ( ( ( ph  /\  x  =  A )  \/  ( -.  ( ph  \/  ps )  /\  x  =  B )  \/  ( ps 
/\  x  =  C ) )  <->  ( (
( ph  /\  x  =  A )  \/  ( -.  ( ph  \/  ps )  /\  x  =  B ) )  \/  ( ps  /\  x  =  C ) ) )
3634, 35syl6bbr 263 . . . 4  |-  ( ps 
->  ( x  =  C  <-> 
( ( ph  /\  x  =  A )  \/  ( -.  ( ph  \/  ps )  /\  x  =  B )  \/  ( ps  /\  x  =  C ) ) ) )
3736eubidv 2283 . . 3  |-  ( ps 
->  ( E! x  x  =  C  <->  E! x
( ( ph  /\  x  =  A )  \/  ( -.  ( ph  \/  ps )  /\  x  =  B )  \/  ( ps  /\  x  =  C ) ) ) )
3825, 37mpbii 211 . 2  |-  ( ps 
->  E! x ( (
ph  /\  x  =  A )  \/  ( -.  ( ph  \/  ps )  /\  x  =  B )  \/  ( ps 
/\  x  =  C ) ) )
39 eueq3.2 . . . 4  |-  B  e. 
_V
4039eueq1 3231 . . 3  |-  E! x  x  =  B
41 ibar 504 . . . . . 6  |-  ( -.  ( ph  \/  ps )  ->  ( x  =  B  <->  ( -.  ( ph  \/  ps )  /\  x  =  B )
) )
42 simpl 457 . . . . . . . . 9  |-  ( (
ph  /\  x  =  A )  ->  ph )
43 simpl 457 . . . . . . . . 9  |-  ( ( ps  /\  x  =  C )  ->  ps )
4442, 43orim12i 516 . . . . . . . 8  |-  ( ( ( ph  /\  x  =  A )  \/  ( ps  /\  x  =  C ) )  ->  ( ph  \/  ps ) )
4544con3i 135 . . . . . . 7  |-  ( -.  ( ph  \/  ps )  ->  -.  ( ( ph  /\  x  =  A )  \/  ( ps 
/\  x  =  C ) ) )
46 biorf 405 . . . . . . 7  |-  ( -.  ( ( ph  /\  x  =  A )  \/  ( ps  /\  x  =  C ) )  -> 
( ( -.  ( ph  \/  ps )  /\  x  =  B )  <->  ( ( ( ph  /\  x  =  A )  \/  ( ps  /\  x  =  C ) )  \/  ( -.  ( ph  \/  ps )  /\  x  =  B ) ) ) )
4745, 46syl 16 . . . . . 6  |-  ( -.  ( ph  \/  ps )  ->  ( ( -.  ( ph  \/  ps )  /\  x  =  B )  <->  ( ( (
ph  /\  x  =  A )  \/  ( ps  /\  x  =  C ) )  \/  ( -.  ( ph  \/  ps )  /\  x  =  B ) ) ) )
4841, 47bitrd 253 . . . . 5  |-  ( -.  ( ph  \/  ps )  ->  ( x  =  B  <->  ( ( (
ph  /\  x  =  A )  \/  ( ps  /\  x  =  C ) )  \/  ( -.  ( ph  \/  ps )  /\  x  =  B ) ) ) )
49 3orcomb 975 . . . . . 6  |-  ( ( ( ph  /\  x  =  A )  \/  ( -.  ( ph  \/  ps )  /\  x  =  B )  \/  ( ps 
/\  x  =  C ) )  <->  ( ( ph  /\  x  =  A )  \/  ( ps 
/\  x  =  C )  \/  ( -.  ( ph  \/  ps )  /\  x  =  B ) ) )
50 df-3or 966 . . . . . 6  |-  ( ( ( ph  /\  x  =  A )  \/  ( ps  /\  x  =  C )  \/  ( -.  ( ph  \/  ps )  /\  x  =  B ) )  <->  ( (
( ph  /\  x  =  A )  \/  ( ps  /\  x  =  C ) )  \/  ( -.  ( ph  \/  ps )  /\  x  =  B ) ) )
5149, 50bitri 249 . . . . 5  |-  ( ( ( ph  /\  x  =  A )  \/  ( -.  ( ph  \/  ps )  /\  x  =  B )  \/  ( ps 
/\  x  =  C ) )  <->  ( (
( ph  /\  x  =  A )  \/  ( ps  /\  x  =  C ) )  \/  ( -.  ( ph  \/  ps )  /\  x  =  B ) ) )
5248, 51syl6bbr 263 . . . 4  |-  ( -.  ( ph  \/  ps )  ->  ( x  =  B  <->  ( ( ph  /\  x  =  A )  \/  ( -.  ( ph  \/  ps )  /\  x  =  B )  \/  ( ps  /\  x  =  C ) ) ) )
5352eubidv 2283 . . 3  |-  ( -.  ( ph  \/  ps )  ->  ( E! x  x  =  B  <->  E! x
( ( ph  /\  x  =  A )  \/  ( -.  ( ph  \/  ps )  /\  x  =  B )  \/  ( ps  /\  x  =  C ) ) ) )
5440, 53mpbii 211 . 2  |-  ( -.  ( ph  \/  ps )  ->  E! x ( ( ph  /\  x  =  A )  \/  ( -.  ( ph  \/  ps )  /\  x  =  B )  \/  ( ps 
/\  x  =  C ) ) )
5523, 38, 54ecase3 932 1  |-  E! x
( ( ph  /\  x  =  A )  \/  ( -.  ( ph  \/  ps )  /\  x  =  B )  \/  ( ps  /\  x  =  C ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 184    \/ wo 368    /\ wa 369    \/ w3o 964    = wceq 1370    e. wcel 1758   E!weu 2260   _Vcvv 3070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-v 3072
This theorem is referenced by:  moeq3  3235
  Copyright terms: Public domain W3C validator