MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  euen1b Structured version   Unicode version

Theorem euen1b 7626
Description: Two ways to express " A has a unique element". (Contributed by Mario Carneiro, 9-Apr-2015.)
Assertion
Ref Expression
euen1b  |-  ( A 
~~  1o  <->  E! x  x  e.  A )
Distinct variable group:    x, A

Proof of Theorem euen1b
StepHypRef Expression
1 euen1 7625 . 2  |-  ( E! x  x  e.  A  <->  { x  |  x  e.  A }  ~~  1o )
2 abid2 2544 . . 3  |-  { x  |  x  e.  A }  =  A
32breq1i 4404 . 2  |-  ( { x  |  x  e.  A }  ~~  1o  <->  A 
~~  1o )
41, 3bitr2i 252 1  |-  ( A 
~~  1o  <->  E! x  x  e.  A )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 186    e. wcel 1844   E!weu 2240   {cab 2389   class class class wbr 4397   1oc1o 7162    ~~ cen 7553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1641  ax-4 1654  ax-5 1727  ax-6 1773  ax-7 1816  ax-8 1846  ax-9 1848  ax-10 1863  ax-11 1868  ax-12 1880  ax-13 2028  ax-ext 2382  ax-sep 4519  ax-nul 4527  ax-pr 4632  ax-un 6576
This theorem depends on definitions:  df-bi 187  df-or 370  df-an 371  df-3an 978  df-tru 1410  df-ex 1636  df-nf 1640  df-sb 1766  df-eu 2244  df-mo 2245  df-clab 2390  df-cleq 2396  df-clel 2399  df-nfc 2554  df-ne 2602  df-ral 2761  df-rex 2762  df-reu 2763  df-rab 2765  df-v 3063  df-sbc 3280  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-nul 3741  df-if 3888  df-sn 3975  df-pr 3977  df-op 3981  df-uni 4194  df-br 4398  df-opab 4456  df-id 4740  df-xp 4831  df-rel 4832  df-cnv 4833  df-co 4834  df-dm 4835  df-rn 4836  df-res 4837  df-ima 4838  df-suc 5418  df-iota 5535  df-fun 5573  df-fn 5574  df-f 5575  df-f1 5576  df-fo 5577  df-f1o 5578  df-fv 5579  df-1o 7169  df-en 7557
This theorem is referenced by:  euhash1  12531  f1otrspeq  16798  hausflf2  20793  minveclem4a  22139
  Copyright terms: Public domain W3C validator