MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  euclemma Structured version   Unicode version

Theorem euclemma 13790
Description: Euclid's lemma. A prime number divides the product of two integers iff it divides at least one of them. (Contributed by Paul Chapman, 17-Nov-2012.)
Assertion
Ref Expression
euclemma  |-  ( ( P  e.  Prime  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( P  ||  ( M  x.  N )  <->  ( P  ||  M  \/  P  ||  N ) ) )

Proof of Theorem euclemma
StepHypRef Expression
1 coprm 13782 . . . . . . 7  |-  ( ( P  e.  Prime  /\  M  e.  ZZ )  ->  ( -.  P  ||  M  <->  ( P  gcd  M )  =  1 ) )
213adant3 1003 . . . . . 6  |-  ( ( P  e.  Prime  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  P  ||  M  <->  ( P  gcd  M )  =  1 ) )
32anbi2d 698 . . . . 5  |-  ( ( P  e.  Prime  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( P  ||  ( M  x.  N )  /\  -.  P  ||  M
)  <->  ( P  ||  ( M  x.  N
)  /\  ( P  gcd  M )  =  1 ) ) )
4 prmz 13763 . . . . . 6  |-  ( P  e.  Prime  ->  P  e.  ZZ )
5 coprmdvds 13784 . . . . . 6  |-  ( ( P  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( P  ||  ( M  x.  N )  /\  ( P  gcd  M
)  =  1 )  ->  P  ||  N
) )
64, 5syl3an1 1246 . . . . 5  |-  ( ( P  e.  Prime  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( P  ||  ( M  x.  N )  /\  ( P  gcd  M
)  =  1 )  ->  P  ||  N
) )
73, 6sylbid 215 . . . 4  |-  ( ( P  e.  Prime  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( P  ||  ( M  x.  N )  /\  -.  P  ||  M
)  ->  P  ||  N
) )
87exp3a 436 . . 3  |-  ( ( P  e.  Prime  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( P  ||  ( M  x.  N )  ->  ( -.  P  ||  M  ->  P  ||  N ) ) )
9 df-or 370 . . 3  |-  ( ( P  ||  M  \/  P  ||  N )  <->  ( -.  P  ||  M  ->  P  ||  N ) )
108, 9syl6ibr 227 . 2  |-  ( ( P  e.  Prime  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( P  ||  ( M  x.  N )  ->  ( P  ||  M  \/  P  ||  N ) ) )
11 ordvdsmul 13565 . . 3  |-  ( ( P  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( P  ||  M  \/  P  ||  N )  ->  P  ||  ( M  x.  N )
) )
124, 11syl3an1 1246 . 2  |-  ( ( P  e.  Prime  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( P  ||  M  \/  P  ||  N )  ->  P  ||  ( M  x.  N )
) )
1310, 12impbid 191 1  |-  ( ( P  e.  Prime  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( P  ||  ( M  x.  N )  <->  ( P  ||  M  \/  P  ||  N ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 960    = wceq 1364    e. wcel 1761   class class class wbr 4289  (class class class)co 6090   1c1 9279    x. cmul 9283   ZZcz 10642    || cdivides 13531    gcd cgcd 13686   Primecprime 13759
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355  ax-pre-sup 9356
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-2nd 6577  df-recs 6828  df-rdg 6862  df-1o 6916  df-2o 6917  df-oadd 6920  df-er 7097  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-sup 7687  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-div 9990  df-nn 10319  df-2 10376  df-3 10377  df-n0 10576  df-z 10643  df-uz 10858  df-rp 10988  df-fl 11638  df-mod 11705  df-seq 11803  df-exp 11862  df-cj 12584  df-re 12585  df-im 12586  df-sqr 12720  df-abs 12721  df-dvds 13532  df-gcd 13687  df-prm 13760
This theorem is referenced by:  isprm6  13791  prmdvdsexp  13796  prmfac1  13800  pcpremul  13906  4sqlem11  14012  ablfac1eulem  16563  znfld  17952  wilthlem1  22365  mumul  22478  lgslem1  22594  lgsdir2  22626  lgsqrlem2  22640  2sqlem4  22665  2sqlem6  22667  pdivsq  27484
  Copyright terms: Public domain W3C validator