MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eucalgval Structured version   Unicode version

Theorem eucalgval 14418
Description: Euclid's Algorithm eucalg 14423 computes the greatest common divisor of two nonnegative integers by repeatedly replacing the larger of them with its remainder modulo the smaller until the remainder is 0.

The value of the step function  E for Euclid's Algorithm. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 28-May-2014.)

Hypothesis
Ref Expression
eucalgval.1  |-  E  =  ( x  e.  NN0 ,  y  e.  NN0  |->  if ( y  =  0 , 
<. x ,  y >. ,  <. y ,  ( x  mod  y )
>. ) )
Assertion
Ref Expression
eucalgval  |-  ( X  e.  ( NN0  X.  NN0 )  ->  ( E `
 X )  =  if ( ( 2nd `  X )  =  0 ,  X ,  <. ( 2nd `  X ) ,  (  mod  `  X
) >. ) )
Distinct variable group:    x, y, X
Allowed substitution hints:    E( x, y)

Proof of Theorem eucalgval
StepHypRef Expression
1 df-ov 6280 . . 3  |-  ( ( 1st `  X ) E ( 2nd `  X
) )  =  ( E `  <. ( 1st `  X ) ,  ( 2nd `  X
) >. )
2 xp1st 6813 . . . 4  |-  ( X  e.  ( NN0  X.  NN0 )  ->  ( 1st `  X )  e.  NN0 )
3 xp2nd 6814 . . . 4  |-  ( X  e.  ( NN0  X.  NN0 )  ->  ( 2nd `  X )  e.  NN0 )
4 eucalgval.1 . . . . 5  |-  E  =  ( x  e.  NN0 ,  y  e.  NN0  |->  if ( y  =  0 , 
<. x ,  y >. ,  <. y ,  ( x  mod  y )
>. ) )
54eucalgval2 14417 . . . 4  |-  ( ( ( 1st `  X
)  e.  NN0  /\  ( 2nd `  X )  e.  NN0 )  -> 
( ( 1st `  X
) E ( 2nd `  X ) )  =  if ( ( 2nd `  X )  =  0 ,  <. ( 1st `  X
) ,  ( 2nd `  X ) >. ,  <. ( 2nd `  X ) ,  ( ( 1st `  X )  mod  ( 2nd `  X ) )
>. ) )
62, 3, 5syl2anc 659 . . 3  |-  ( X  e.  ( NN0  X.  NN0 )  ->  ( ( 1st `  X ) E ( 2nd `  X
) )  =  if ( ( 2nd `  X
)  =  0 , 
<. ( 1st `  X
) ,  ( 2nd `  X ) >. ,  <. ( 2nd `  X ) ,  ( ( 1st `  X )  mod  ( 2nd `  X ) )
>. ) )
71, 6syl5eqr 2457 . 2  |-  ( X  e.  ( NN0  X.  NN0 )  ->  ( E `
 <. ( 1st `  X
) ,  ( 2nd `  X ) >. )  =  if ( ( 2nd `  X )  =  0 ,  <. ( 1st `  X
) ,  ( 2nd `  X ) >. ,  <. ( 2nd `  X ) ,  ( ( 1st `  X )  mod  ( 2nd `  X ) )
>. ) )
8 1st2nd2 6820 . . 3  |-  ( X  e.  ( NN0  X.  NN0 )  ->  X  = 
<. ( 1st `  X
) ,  ( 2nd `  X ) >. )
98fveq2d 5852 . 2  |-  ( X  e.  ( NN0  X.  NN0 )  ->  ( E `
 X )  =  ( E `  <. ( 1st `  X ) ,  ( 2nd `  X
) >. ) )
108fveq2d 5852 . . . . 5  |-  ( X  e.  ( NN0  X.  NN0 )  ->  (  mod  `  X )  =  (  mod  `  <. ( 1st `  X ) ,  ( 2nd `  X )
>. ) )
11 df-ov 6280 . . . . 5  |-  ( ( 1st `  X )  mod  ( 2nd `  X
) )  =  (  mod  `  <. ( 1st `  X ) ,  ( 2nd `  X )
>. )
1210, 11syl6eqr 2461 . . . 4  |-  ( X  e.  ( NN0  X.  NN0 )  ->  (  mod  `  X )  =  ( ( 1st `  X
)  mod  ( 2nd `  X ) ) )
1312opeq2d 4165 . . 3  |-  ( X  e.  ( NN0  X.  NN0 )  ->  <. ( 2nd `  X ) ,  (  mod  `  X
) >.  =  <. ( 2nd `  X ) ,  ( ( 1st `  X
)  mod  ( 2nd `  X ) ) >.
)
148, 13ifeq12d 3904 . 2  |-  ( X  e.  ( NN0  X.  NN0 )  ->  if ( ( 2nd `  X
)  =  0 ,  X ,  <. ( 2nd `  X ) ,  (  mod  `  X
) >. )  =  if ( ( 2nd `  X
)  =  0 , 
<. ( 1st `  X
) ,  ( 2nd `  X ) >. ,  <. ( 2nd `  X ) ,  ( ( 1st `  X )  mod  ( 2nd `  X ) )
>. ) )
157, 9, 143eqtr4d 2453 1  |-  ( X  e.  ( NN0  X.  NN0 )  ->  ( E `
 X )  =  if ( ( 2nd `  X )  =  0 ,  X ,  <. ( 2nd `  X ) ,  (  mod  `  X
) >. ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1405    e. wcel 1842   ifcif 3884   <.cop 3977    X. cxp 4820   ` cfv 5568  (class class class)co 6277    |-> cmpt2 6279   1stc1st 6781   2ndc2nd 6782   0cc0 9521   NN0cn0 10835    mod cmo 12032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6573
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2758  df-rex 2759  df-rab 2762  df-v 3060  df-sbc 3277  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-nul 3738  df-if 3885  df-sn 3972  df-pr 3974  df-op 3978  df-uni 4191  df-br 4395  df-opab 4453  df-mpt 4454  df-id 4737  df-xp 4828  df-rel 4829  df-cnv 4830  df-co 4831  df-dm 4832  df-rn 4833  df-iota 5532  df-fun 5570  df-fv 5576  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-1st 6783  df-2nd 6784
This theorem is referenced by:  eucalginv  14420  eucalglt  14421
  Copyright terms: Public domain W3C validator