MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eucalgcvga Structured version   Unicode version

Theorem eucalgcvga 13780
Description: Once Euclid's Algorithm halts after  N steps, the second element of the state remains 0 . (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 29-May-2014.)
Hypotheses
Ref Expression
eucalgval.1  |-  E  =  ( x  e.  NN0 ,  y  e.  NN0  |->  if ( y  =  0 , 
<. x ,  y >. ,  <. y ,  ( x  mod  y )
>. ) )
eucalg.2  |-  R  =  seq 0 ( ( E  o.  1st ) ,  ( NN0  X.  { A } ) )
eucalgcvga.3  |-  N  =  ( 2nd `  A
)
Assertion
Ref Expression
eucalgcvga  |-  ( A  e.  ( NN0  X.  NN0 )  ->  ( K  e.  ( ZZ>= `  N
)  ->  ( 2nd `  ( R `  K
) )  =  0 ) )
Distinct variable groups:    x, y, N    x, A, y    x, R
Allowed substitution hints:    R( y)    E( x, y)    K( x, y)

Proof of Theorem eucalgcvga
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 eucalgcvga.3 . . . . . . 7  |-  N  =  ( 2nd `  A
)
2 xp2nd 6626 . . . . . . 7  |-  ( A  e.  ( NN0  X.  NN0 )  ->  ( 2nd `  A )  e.  NN0 )
31, 2syl5eqel 2527 . . . . . 6  |-  ( A  e.  ( NN0  X.  NN0 )  ->  N  e. 
NN0 )
4 eluznn0 10943 . . . . . 6  |-  ( ( N  e.  NN0  /\  K  e.  ( ZZ>= `  N ) )  ->  K  e.  NN0 )
53, 4sylan 471 . . . . 5  |-  ( ( A  e.  ( NN0 
X.  NN0 )  /\  K  e.  ( ZZ>= `  N )
)  ->  K  e.  NN0 )
6 nn0uz 10914 . . . . . . 7  |-  NN0  =  ( ZZ>= `  0 )
7 eucalg.2 . . . . . . 7  |-  R  =  seq 0 ( ( E  o.  1st ) ,  ( NN0  X.  { A } ) )
8 0zd 10677 . . . . . . 7  |-  ( A  e.  ( NN0  X.  NN0 )  ->  0  e.  ZZ )
9 id 22 . . . . . . 7  |-  ( A  e.  ( NN0  X.  NN0 )  ->  A  e.  ( NN0  X.  NN0 ) )
10 eucalgval.1 . . . . . . . . 9  |-  E  =  ( x  e.  NN0 ,  y  e.  NN0  |->  if ( y  =  0 , 
<. x ,  y >. ,  <. y ,  ( x  mod  y )
>. ) )
1110eucalgf 13777 . . . . . . . 8  |-  E :
( NN0  X.  NN0 ) --> ( NN0  X.  NN0 )
1211a1i 11 . . . . . . 7  |-  ( A  e.  ( NN0  X.  NN0 )  ->  E :
( NN0  X.  NN0 ) --> ( NN0  X.  NN0 )
)
136, 7, 8, 9, 12algrf 13767 . . . . . 6  |-  ( A  e.  ( NN0  X.  NN0 )  ->  R : NN0
--> ( NN0  X.  NN0 ) )
1413ffvelrnda 5862 . . . . 5  |-  ( ( A  e.  ( NN0 
X.  NN0 )  /\  K  e.  NN0 )  ->  ( R `  K )  e.  ( NN0  X.  NN0 ) )
155, 14syldan 470 . . . 4  |-  ( ( A  e.  ( NN0 
X.  NN0 )  /\  K  e.  ( ZZ>= `  N )
)  ->  ( R `  K )  e.  ( NN0  X.  NN0 )
)
16 fvres 5723 . . . 4  |-  ( ( R `  K )  e.  ( NN0  X.  NN0 )  ->  ( ( 2nd  |`  ( NN0  X. 
NN0 ) ) `  ( R `  K ) )  =  ( 2nd `  ( R `  K
) ) )
1715, 16syl 16 . . 3  |-  ( ( A  e.  ( NN0 
X.  NN0 )  /\  K  e.  ( ZZ>= `  N )
)  ->  ( ( 2nd  |`  ( NN0  X.  NN0 ) ) `  ( R `  K )
)  =  ( 2nd `  ( R `  K
) ) )
18 simpl 457 . . . 4  |-  ( ( A  e.  ( NN0 
X.  NN0 )  /\  K  e.  ( ZZ>= `  N )
)  ->  A  e.  ( NN0  X.  NN0 )
)
19 fvres 5723 . . . . . . . 8  |-  ( A  e.  ( NN0  X.  NN0 )  ->  ( ( 2nd  |`  ( NN0  X. 
NN0 ) ) `  A )  =  ( 2nd `  A ) )
2019, 1syl6eqr 2493 . . . . . . 7  |-  ( A  e.  ( NN0  X.  NN0 )  ->  ( ( 2nd  |`  ( NN0  X. 
NN0 ) ) `  A )  =  N )
2120fveq2d 5714 . . . . . 6  |-  ( A  e.  ( NN0  X.  NN0 )  ->  ( ZZ>= `  ( ( 2nd  |`  ( NN0  X.  NN0 ) ) `
 A ) )  =  ( ZZ>= `  N
) )
2221eleq2d 2510 . . . . 5  |-  ( A  e.  ( NN0  X.  NN0 )  ->  ( K  e.  ( ZZ>= `  (
( 2nd  |`  ( NN0 
X.  NN0 ) ) `  A ) )  <->  K  e.  ( ZZ>= `  N )
) )
2322biimpar 485 . . . 4  |-  ( ( A  e.  ( NN0 
X.  NN0 )  /\  K  e.  ( ZZ>= `  N )
)  ->  K  e.  ( ZZ>= `  ( ( 2nd  |`  ( NN0  X.  NN0 ) ) `  A
) ) )
24 f2ndres 6618 . . . . 5  |-  ( 2nd  |`  ( NN0  X.  NN0 ) ) : ( NN0  X.  NN0 ) --> NN0
2510eucalglt 13779 . . . . . 6  |-  ( z  e.  ( NN0  X.  NN0 )  ->  ( ( 2nd `  ( E `
 z ) )  =/=  0  ->  ( 2nd `  ( E `  z ) )  < 
( 2nd `  z
) ) )
2611ffvelrni 5861 . . . . . . . 8  |-  ( z  e.  ( NN0  X.  NN0 )  ->  ( E `
 z )  e.  ( NN0  X.  NN0 ) )
27 fvres 5723 . . . . . . . 8  |-  ( ( E `  z )  e.  ( NN0  X.  NN0 )  ->  ( ( 2nd  |`  ( NN0  X. 
NN0 ) ) `  ( E `  z ) )  =  ( 2nd `  ( E `  z
) ) )
2826, 27syl 16 . . . . . . 7  |-  ( z  e.  ( NN0  X.  NN0 )  ->  ( ( 2nd  |`  ( NN0  X. 
NN0 ) ) `  ( E `  z ) )  =  ( 2nd `  ( E `  z
) ) )
2928neeq1d 2637 . . . . . 6  |-  ( z  e.  ( NN0  X.  NN0 )  ->  ( ( ( 2nd  |`  ( NN0  X.  NN0 ) ) `
 ( E `  z ) )  =/=  0  <->  ( 2nd `  ( E `  z )
)  =/=  0 ) )
30 fvres 5723 . . . . . . 7  |-  ( z  e.  ( NN0  X.  NN0 )  ->  ( ( 2nd  |`  ( NN0  X. 
NN0 ) ) `  z )  =  ( 2nd `  z ) )
3128, 30breq12d 4324 . . . . . 6  |-  ( z  e.  ( NN0  X.  NN0 )  ->  ( ( ( 2nd  |`  ( NN0  X.  NN0 ) ) `
 ( E `  z ) )  < 
( ( 2nd  |`  ( NN0  X.  NN0 ) ) `
 z )  <->  ( 2nd `  ( E `  z
) )  <  ( 2nd `  z ) ) )
3225, 29, 313imtr4d 268 . . . . 5  |-  ( z  e.  ( NN0  X.  NN0 )  ->  ( ( ( 2nd  |`  ( NN0  X.  NN0 ) ) `
 ( E `  z ) )  =/=  0  ->  ( ( 2nd  |`  ( NN0  X.  NN0 ) ) `  ( E `  z )
)  <  ( ( 2nd  |`  ( NN0  X.  NN0 ) ) `  z
) ) )
33 eqid 2443 . . . . 5  |-  ( ( 2nd  |`  ( NN0  X. 
NN0 ) ) `  A )  =  ( ( 2nd  |`  ( NN0  X.  NN0 ) ) `
 A )
3411, 7, 24, 32, 33algcvga 13773 . . . 4  |-  ( A  e.  ( NN0  X.  NN0 )  ->  ( K  e.  ( ZZ>= `  (
( 2nd  |`  ( NN0 
X.  NN0 ) ) `  A ) )  -> 
( ( 2nd  |`  ( NN0  X.  NN0 ) ) `
 ( R `  K ) )  =  0 ) )
3518, 23, 34sylc 60 . . 3  |-  ( ( A  e.  ( NN0 
X.  NN0 )  /\  K  e.  ( ZZ>= `  N )
)  ->  ( ( 2nd  |`  ( NN0  X.  NN0 ) ) `  ( R `  K )
)  =  0 )
3617, 35eqtr3d 2477 . 2  |-  ( ( A  e.  ( NN0 
X.  NN0 )  /\  K  e.  ( ZZ>= `  N )
)  ->  ( 2nd `  ( R `  K
) )  =  0 )
3736ex 434 1  |-  ( A  e.  ( NN0  X.  NN0 )  ->  ( K  e.  ( ZZ>= `  N
)  ->  ( 2nd `  ( R `  K
) )  =  0 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756    =/= wne 2620   ifcif 3810   {csn 3896   <.cop 3902   class class class wbr 4311    X. cxp 4857    |` cres 4861    o. ccom 4863   -->wf 5433   ` cfv 5437  (class class class)co 6110    e. cmpt2 6112   1stc1st 6594   2ndc2nd 6595   0cc0 9301    < clt 9437   NN0cn0 10598   ZZ>=cuz 10880    mod cmo 11727    seqcseq 11825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4432  ax-nul 4440  ax-pow 4489  ax-pr 4550  ax-un 6391  ax-cnex 9357  ax-resscn 9358  ax-1cn 9359  ax-icn 9360  ax-addcl 9361  ax-addrcl 9362  ax-mulcl 9363  ax-mulrcl 9364  ax-mulcom 9365  ax-addass 9366  ax-mulass 9367  ax-distr 9368  ax-i2m1 9369  ax-1ne0 9370  ax-1rid 9371  ax-rnegex 9372  ax-rrecex 9373  ax-cnre 9374  ax-pre-lttri 9375  ax-pre-lttrn 9376  ax-pre-ltadd 9377  ax-pre-mulgt0 9378  ax-pre-sup 9379
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2739  df-rex 2740  df-reu 2741  df-rmo 2742  df-rab 2743  df-v 2993  df-sbc 3206  df-csb 3308  df-dif 3350  df-un 3352  df-in 3354  df-ss 3361  df-pss 3363  df-nul 3657  df-if 3811  df-pw 3881  df-sn 3897  df-pr 3899  df-tp 3901  df-op 3903  df-uni 4111  df-iun 4192  df-br 4312  df-opab 4370  df-mpt 4371  df-tr 4405  df-eprel 4651  df-id 4655  df-po 4660  df-so 4661  df-fr 4698  df-we 4700  df-ord 4741  df-on 4742  df-lim 4743  df-suc 4744  df-xp 4865  df-rel 4866  df-cnv 4867  df-co 4868  df-dm 4869  df-rn 4870  df-res 4871  df-ima 4872  df-iota 5400  df-fun 5439  df-fn 5440  df-f 5441  df-f1 5442  df-fo 5443  df-f1o 5444  df-fv 5445  df-riota 6071  df-ov 6113  df-oprab 6114  df-mpt2 6115  df-om 6496  df-1st 6596  df-2nd 6597  df-recs 6851  df-rdg 6885  df-er 7120  df-en 7330  df-dom 7331  df-sdom 7332  df-sup 7710  df-pnf 9439  df-mnf 9440  df-xr 9441  df-ltxr 9442  df-le 9443  df-sub 9616  df-neg 9617  df-div 10013  df-nn 10342  df-n0 10599  df-z 10666  df-uz 10881  df-rp 11011  df-fz 11457  df-fl 11661  df-mod 11728  df-seq 11826
This theorem is referenced by:  eucalg  13781
  Copyright terms: Public domain W3C validator