Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  eubid Structured version   Visualization version   Unicode version

Theorem eubid 2337
 Description: Formula-building rule for uniqueness quantifier (deduction rule). (Contributed by NM, 9-Jul-1994.)
Hypotheses
Ref Expression
eubid.1
eubid.2
Assertion
Ref Expression
eubid

Proof of Theorem eubid
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 eubid.1 . . . 4
2 eubid.2 . . . . 5
32bibi1d 326 . . . 4
41, 3albid 1983 . . 3
54exbidv 1776 . 2
6 df-eu 2323 . 2
7 df-eu 2323 . 2
85, 6, 73bitr4g 296 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 189  wal 1450  wex 1671  wnf 1675  weu 2319 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-12 1950 This theorem depends on definitions:  df-bi 190  df-ex 1672  df-nf 1676  df-eu 2323 This theorem is referenced by:  mobid  2338  eubidv  2339  euor  2361  euor2  2363  euan  2379  reubida  2959  reueq1f  2971  eusv2i  4598  reusv2lem3  4604  eubi  36857  nbusgredgeu0  39606
 Copyright terms: Public domain W3C validator