Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  euanOLD Structured version   Unicode version

Theorem euanOLD 2339
 Description: Obsolete poof of euan 2338 as of 24-Dec-2018. (Contributed by NM, 19-Feb-2005.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
moanim.1
Assertion
Ref Expression
euanOLD

Proof of Theorem euanOLD
StepHypRef Expression
1 moanim.1 . . . . . 6
2 simpl 457 . . . . . 6
31, 2exlimi 1847 . . . . 5
43adantr 465 . . . 4
5 exsimpr 1646 . . . . 5
65adantr 465 . . . 4
7 nfe1 1780 . . . . . 6
8 simpr 461 . . . . . . 7
93a1d 25 . . . . . . . 8
109ancrd 554 . . . . . . 7
118, 10impbid2 204 . . . . . 6
127, 11mobid 2282 . . . . 5
1312biimpa 484 . . . 4
144, 6, 13jca32 535 . . 3
15 eu5 2290 . . 3
16 eu5 2290 . . . 4
1716anbi2i 694 . . 3
1814, 15, 173imtr4i 266 . 2
19 ibar 504 . . . 4
201, 19eubid 2281 . . 3
2120biimpa 484 . 2
2218, 21impbii 188 1
 Colors of variables: wff setvar class Syntax hints:   wb 184   wa 369  wex 1587  wnf 1590  weu 2260  wmo 2261 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-10 1777  ax-12 1794 This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1588  df-nf 1591  df-eu 2264  df-mo 2265 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator