Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eu2ndop1stv Structured version   Unicode version

Theorem eu2ndop1stv 29979
Description: If there is a unique second component in an ordered pair contained in a given set, the first component must be a set. (Contributed by Alexander van der Vekens, 29-Nov-2017.)
Assertion
Ref Expression
eu2ndop1stv  |-  ( E! y <. A ,  y
>.  e.  V  ->  A  e.  _V )
Distinct variable groups:    y, A    y, V

Proof of Theorem eu2ndop1stv
StepHypRef Expression
1 euex 2279 . 2  |-  ( E! y <. A ,  y
>.  e.  V  ->  E. y <. A ,  y >.  e.  V )
2 nfeu1 2264 . . . 4  |-  F/ y E! y <. A , 
y >.  e.  V
3 nfcv 2574 . . . . 5  |-  F/_ y A
43nfel1 2584 . . . 4  |-  F/ y  A  e.  _V
52, 4nfim 1852 . . 3  |-  F/ y ( E! y <. A ,  y >.  e.  V  ->  A  e.  _V )
6 opprc1 4077 . . . . . . . . 9  |-  ( -.  A  e.  _V  ->  <. A ,  y >.  =  (/) )
76eleq1d 2504 . . . . . . . 8  |-  ( -.  A  e.  _V  ->  (
<. A ,  y >.  e.  V  <->  (/)  e.  V ) )
8 ax-5 1670 . . . . . . . . 9  |-  ( (/)  e.  V  ->  A. y (/) 
e.  V )
9 alneu 29978 . . . . . . . . 9  |-  ( A. y (/)  e.  V  ->  -.  E! y (/)  e.  V
)
108, 9syl 16 . . . . . . . 8  |-  ( (/)  e.  V  ->  -.  E! y (/)  e.  V )
117, 10syl6bi 228 . . . . . . 7  |-  ( -.  A  e.  _V  ->  (
<. A ,  y >.  e.  V  ->  -.  E! y (/)  e.  V ) )
1211impcom 430 . . . . . 6  |-  ( (
<. A ,  y >.  e.  V  /\  -.  A  e.  _V )  ->  -.  E! y (/)  e.  V
)
137eubidv 2274 . . . . . . . 8  |-  ( -.  A  e.  _V  ->  ( E! y <. A , 
y >.  e.  V  <->  E! y (/) 
e.  V ) )
1413notbid 294 . . . . . . 7  |-  ( -.  A  e.  _V  ->  ( -.  E! y <. A ,  y >.  e.  V  <->  -.  E! y (/) 
e.  V ) )
1514adantl 466 . . . . . 6  |-  ( (
<. A ,  y >.  e.  V  /\  -.  A  e.  _V )  ->  ( -.  E! y <. A , 
y >.  e.  V  <->  -.  E! y (/)  e.  V ) )
1612, 15mpbird 232 . . . . 5  |-  ( (
<. A ,  y >.  e.  V  /\  -.  A  e.  _V )  ->  -.  E! y <. A ,  y
>.  e.  V )
1716ex 434 . . . 4  |-  ( <. A ,  y >.  e.  V  ->  ( -.  A  e.  _V  ->  -.  E! y <. A , 
y >.  e.  V ) )
1817con4d 105 . . 3  |-  ( <. A ,  y >.  e.  V  ->  ( E! y <. A ,  y
>.  e.  V  ->  A  e.  _V ) )
195, 18exlimi 1844 . 2  |-  ( E. y <. A ,  y
>.  e.  V  ->  ( E! y <. A ,  y
>.  e.  V  ->  A  e.  _V ) )
201, 19mpcom 36 1  |-  ( E! y <. A ,  y
>.  e.  V  ->  A  e.  _V )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369   A.wal 1367   E.wex 1586    e. wcel 1756   E!weu 2252   _Vcvv 2967   (/)c0 3632   <.cop 3878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-nul 4416  ax-pow 4465
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-v 2969  df-dif 3326  df-in 3330  df-ss 3337  df-nul 3633  df-if 3787  df-op 3879
This theorem is referenced by:  afveu  30012  tz6.12-afv  30032
  Copyright terms: Public domain W3C validator