Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  eu2 Structured version   Visualization version   Unicode version

Theorem eu2 2358
 Description: An alternate way of defining existential uniqueness. Definition 6.10 of [TakeutiZaring] p. 26. (Contributed by NM, 8-Jul-1994.) (Proof shortened by Wolf Lammen, 2-Dec-2018.)
Hypothesis
Ref Expression
eu2.1
Assertion
Ref Expression
eu2
Distinct variable group:   ,
Allowed substitution hints:   (,)

Proof of Theorem eu2
StepHypRef Expression
1 eu5 2345 . 2
2 eu2.1 . . . 4
32mo3 2356 . . 3
43anbi2i 708 . 2
51, 4bitri 257 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 189   wa 376  wal 1450  wex 1671  wnf 1675  wsb 1805  weu 2319  wmo 2320 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104 This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324 This theorem is referenced by:  reu2  3214  bnj1321  29908
 Copyright terms: Public domain W3C validator