Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumpinfval Structured version   Unicode version

Theorem esumpinfval 28401
Description: The value of the extended sum of nonnegative terms, with at least one infinite term. (Contributed by Thierry Arnoux, 19-Jun-2017.)
Hypotheses
Ref Expression
esumpinfval.0  |-  F/ k
ph
esumpinfval.1  |-  ( ph  ->  A  e.  V )
esumpinfval.2  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  ( 0 [,] +oo ) )
esumpinfval.3  |-  ( ph  ->  E. k  e.  A  B  = +oo )
Assertion
Ref Expression
esumpinfval  |-  ( ph  -> Σ* k  e.  A B  = +oo )
Distinct variable groups:    A, k    k, V
Allowed substitution hints:    ph( k)    B( k)

Proof of Theorem esumpinfval
StepHypRef Expression
1 iccssxr 11576 . . 3  |-  ( 0 [,] +oo )  C_  RR*
2 esumpinfval.1 . . . 4  |-  ( ph  ->  A  e.  V )
3 esumpinfval.0 . . . . 5  |-  F/ k
ph
4 esumpinfval.2 . . . . . 6  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  ( 0 [,] +oo ) )
54ex 432 . . . . 5  |-  ( ph  ->  ( k  e.  A  ->  B  e.  ( 0 [,] +oo ) ) )
63, 5ralrimi 2801 . . . 4  |-  ( ph  ->  A. k  e.  A  B  e.  ( 0 [,] +oo ) )
7 nfcv 2562 . . . . 5  |-  F/_ k A
87esumcl 28358 . . . 4  |-  ( ( A  e.  V  /\  A. k  e.  A  B  e.  ( 0 [,] +oo ) )  -> Σ* k  e.  A B  e.  ( 0 [,] +oo ) )
92, 6, 8syl2anc 659 . . 3  |-  ( ph  -> Σ* k  e.  A B  e.  ( 0 [,] +oo ) )
101, 9sseldi 3437 . 2  |-  ( ph  -> Σ* k  e.  A B  e. 
RR* )
11 nfrab1 2985 . . . . 5  |-  F/_ k { k  e.  A  |  B  = +oo }
12 ssrab2 3521 . . . . . 6  |-  { k  e.  A  |  B  = +oo }  C_  A
1312a1i 11 . . . . 5  |-  ( ph  ->  { k  e.  A  |  B  = +oo } 
C_  A )
14 0xr 9588 . . . . . . . 8  |-  0  e.  RR*
15 pnfxr 11290 . . . . . . . 8  |- +oo  e.  RR*
16 0lepnf 11309 . . . . . . . 8  |-  0  <_ +oo
17 ubicc2 11606 . . . . . . . 8  |-  ( ( 0  e.  RR*  /\ +oo  e.  RR*  /\  0  <_ +oo )  -> +oo  e.  ( 0 [,] +oo ) )
1814, 15, 16, 17mp3an 1324 . . . . . . 7  |- +oo  e.  ( 0 [,] +oo )
1918a1i 11 . . . . . 6  |-  ( ( ( ph  /\  k  e.  A )  /\  B  = +oo )  -> +oo  e.  ( 0 [,] +oo ) )
20 0e0iccpnf 11600 . . . . . . 7  |-  0  e.  ( 0 [,] +oo )
2120a1i 11 . . . . . 6  |-  ( ( ( ph  /\  k  e.  A )  /\  -.  B  = +oo )  ->  0  e.  ( 0 [,] +oo ) )
2219, 21ifclda 3914 . . . . 5  |-  ( (
ph  /\  k  e.  A )  ->  if ( B  = +oo , +oo ,  0 )  e.  ( 0 [,] +oo ) )
23 eldif 3421 . . . . . . . 8  |-  ( k  e.  ( A  \  { k  e.  A  |  B  = +oo } )  <->  ( k  e.  A  /\  -.  k  e.  { k  e.  A  |  B  = +oo } ) )
24 rabid 2981 . . . . . . . . . 10  |-  ( k  e.  { k  e.  A  |  B  = +oo }  <->  ( k  e.  A  /\  B  = +oo ) )
2524simplbi2 623 . . . . . . . . 9  |-  ( k  e.  A  ->  ( B  = +oo  ->  k  e.  { k  e.  A  |  B  = +oo } ) )
2625con3dimp 439 . . . . . . . 8  |-  ( ( k  e.  A  /\  -.  k  e.  { k  e.  A  |  B  = +oo } )  ->  -.  B  = +oo )
2723, 26sylbi 195 . . . . . . 7  |-  ( k  e.  ( A  \  { k  e.  A  |  B  = +oo } )  ->  -.  B  = +oo )
2827adantl 464 . . . . . 6  |-  ( (
ph  /\  k  e.  ( A  \  { k  e.  A  |  B  = +oo } ) )  ->  -.  B  = +oo )
2928iffalsed 3893 . . . . 5  |-  ( (
ph  /\  k  e.  ( A  \  { k  e.  A  |  B  = +oo } ) )  ->  if ( B  = +oo , +oo ,  0 )  =  0 )
303, 11, 7, 13, 2, 22, 29esumss 28400 . . . 4  |-  ( ph  -> Σ* k  e.  { k  e.  A  |  B  = +oo } if ( B  = +oo , +oo ,  0 )  = Σ* k  e.  A if ( B  = +oo , +oo ,  0 ) )
31 eqidd 2401 . . . . . 6  |-  ( ph  ->  { k  e.  A  |  B  = +oo }  =  { k  e.  A  |  B  = +oo } )
3224simprbi 462 . . . . . . . 8  |-  ( k  e.  { k  e.  A  |  B  = +oo }  ->  B  = +oo )
3332iftrued 3890 . . . . . . 7  |-  ( k  e.  { k  e.  A  |  B  = +oo }  ->  if ( B  = +oo , +oo ,  0 )  = +oo )
3433adantl 464 . . . . . 6  |-  ( (
ph  /\  k  e.  { k  e.  A  |  B  = +oo } )  ->  if ( B  = +oo , +oo ,  0 )  = +oo )
353, 31, 34esumeq12dvaf 28359 . . . . 5  |-  ( ph  -> Σ* k  e.  { k  e.  A  |  B  = +oo } if ( B  = +oo , +oo ,  0 )  = Σ* k  e.  { k  e.  A  |  B  = +oo } +oo )
362, 13ssexd 4538 . . . . . 6  |-  ( ph  ->  { k  e.  A  |  B  = +oo }  e.  _V )
37 nfcv 2562 . . . . . . 7  |-  F/_ k +oo
3811, 37esumcst 28391 . . . . . 6  |-  ( ( { k  e.  A  |  B  = +oo }  e.  _V  /\ +oo  e.  ( 0 [,] +oo ) )  -> Σ* k  e.  {
k  e.  A  |  B  = +oo } +oo  =  ( ( # `  { k  e.  A  |  B  = +oo } ) xe +oo ) )
3936, 18, 38sylancl 660 . . . . 5  |-  ( ph  -> Σ* k  e.  { k  e.  A  |  B  = +oo } +oo  =  ( ( # `  {
k  e.  A  |  B  = +oo } ) xe +oo )
)
40 hashxrcl 12381 . . . . . . 7  |-  ( { k  e.  A  |  B  = +oo }  e.  _V  ->  ( # `  {
k  e.  A  |  B  = +oo } )  e.  RR* )
4136, 40syl 17 . . . . . 6  |-  ( ph  ->  ( # `  {
k  e.  A  |  B  = +oo } )  e.  RR* )
42 esumpinfval.3 . . . . . . . 8  |-  ( ph  ->  E. k  e.  A  B  = +oo )
43 rabn0 3756 . . . . . . . 8  |-  ( { k  e.  A  |  B  = +oo }  =/=  (/)  <->  E. k  e.  A  B  = +oo )
4442, 43sylibr 212 . . . . . . 7  |-  ( ph  ->  { k  e.  A  |  B  = +oo }  =/=  (/) )
45 hashgt0 12409 . . . . . . 7  |-  ( ( { k  e.  A  |  B  = +oo }  e.  _V  /\  {
k  e.  A  |  B  = +oo }  =/=  (/) )  ->  0  <  (
# `  { k  e.  A  |  B  = +oo } ) )
4636, 44, 45syl2anc 659 . . . . . 6  |-  ( ph  ->  0  <  ( # `  { k  e.  A  |  B  = +oo } ) )
47 xmulpnf1 11435 . . . . . 6  |-  ( ( ( # `  {
k  e.  A  |  B  = +oo } )  e.  RR*  /\  0  <  ( # `  {
k  e.  A  |  B  = +oo } ) )  ->  ( ( # `
 { k  e.  A  |  B  = +oo } ) xe +oo )  = +oo )
4841, 46, 47syl2anc 659 . . . . 5  |-  ( ph  ->  ( ( # `  {
k  e.  A  |  B  = +oo } ) xe +oo )  = +oo )
4935, 39, 483eqtrd 2445 . . . 4  |-  ( ph  -> Σ* k  e.  { k  e.  A  |  B  = +oo } if ( B  = +oo , +oo ,  0 )  = +oo )
5030, 49eqtr3d 2443 . . 3  |-  ( ph  -> Σ* k  e.  A if ( B  = +oo , +oo ,  0 )  = +oo )
51 breq1 4395 . . . . 5  |-  ( +oo  =  if ( B  = +oo , +oo , 
0 )  ->  ( +oo  <_  B  <->  if ( B  = +oo , +oo ,  0 )  <_  B ) )
52 breq1 4395 . . . . 5  |-  ( 0  =  if ( B  = +oo , +oo ,  0 )  -> 
( 0  <_  B  <->  if ( B  = +oo , +oo ,  0 )  <_  B ) )
53 pnfge 11308 . . . . . . . 8  |-  ( +oo  e.  RR*  -> +oo  <_ +oo )
5415, 53ax-mp 5 . . . . . . 7  |- +oo  <_ +oo
55 breq2 4396 . . . . . . 7  |-  ( B  = +oo  ->  ( +oo  <_  B  <-> +oo  <_ +oo )
)
5654, 55mpbiri 233 . . . . . 6  |-  ( B  = +oo  -> +oo  <_  B )
5756adantl 464 . . . . 5  |-  ( ( ( ph  /\  k  e.  A )  /\  B  = +oo )  -> +oo  <_  B )
584adantr 463 . . . . . 6  |-  ( ( ( ph  /\  k  e.  A )  /\  -.  B  = +oo )  ->  B  e.  ( 0 [,] +oo ) )
59 iccgelb 11550 . . . . . . 7  |-  ( ( 0  e.  RR*  /\ +oo  e.  RR*  /\  B  e.  ( 0 [,] +oo ) )  ->  0  <_  B )
6014, 15, 59mp3an12 1314 . . . . . 6  |-  ( B  e.  ( 0 [,] +oo )  ->  0  <_  B )
6158, 60syl 17 . . . . 5  |-  ( ( ( ph  /\  k  e.  A )  /\  -.  B  = +oo )  ->  0  <_  B )
6251, 52, 57, 61ifbothda 3917 . . . 4  |-  ( (
ph  /\  k  e.  A )  ->  if ( B  = +oo , +oo ,  0 )  <_  B )
633, 7, 2, 22, 4, 62esumlef 28390 . . 3  |-  ( ph  -> Σ* k  e.  A if ( B  = +oo , +oo ,  0 )  <_ Σ* k  e.  A B )
6450, 63eqbrtrrd 4414 . 2  |-  ( ph  -> +oo  <_ Σ* k  e.  A B )
65 xgepnf 27892 . . 3  |-  (Σ* k  e.  A B  e.  RR*  ->  ( +oo  <_ Σ* k  e.  A B 
<-> Σ* k  e.  A B  = +oo ) )
6665biimpd 207 . 2  |-  (Σ* k  e.  A B  e.  RR*  ->  ( +oo  <_ Σ* k  e.  A B  -> Σ* k  e.  A B  = +oo ) )
6710, 64, 66sylc 59 1  |-  ( ph  -> Σ* k  e.  A B  = +oo )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 367    = wceq 1403   F/wnf 1635    e. wcel 1840    =/= wne 2596   A.wral 2751   E.wrex 2752   {crab 2755   _Vcvv 3056    \ cdif 3408    C_ wss 3411   (/)c0 3735   ifcif 3882   class class class wbr 4392   ` cfv 5523  (class class class)co 6232   0cc0 9440   +oocpnf 9573   RR*cxr 9575    < clt 9576    <_ cle 9577   xecxmu 11286   [,]cicc 11501   #chash 12357  Σ*cesum 28355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1637  ax-4 1650  ax-5 1723  ax-6 1769  ax-7 1812  ax-8 1842  ax-9 1844  ax-10 1859  ax-11 1864  ax-12 1876  ax-13 2024  ax-ext 2378  ax-rep 4504  ax-sep 4514  ax-nul 4522  ax-pow 4569  ax-pr 4627  ax-un 6528  ax-inf2 8009  ax-cnex 9496  ax-resscn 9497  ax-1cn 9498  ax-icn 9499  ax-addcl 9500  ax-addrcl 9501  ax-mulcl 9502  ax-mulrcl 9503  ax-mulcom 9504  ax-addass 9505  ax-mulass 9506  ax-distr 9507  ax-i2m1 9508  ax-1ne0 9509  ax-1rid 9510  ax-rnegex 9511  ax-rrecex 9512  ax-cnre 9513  ax-pre-lttri 9514  ax-pre-lttrn 9515  ax-pre-ltadd 9516  ax-pre-mulgt0 9517  ax-pre-sup 9518  ax-addf 9519  ax-mulf 9520
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 973  df-3an 974  df-tru 1406  df-fal 1409  df-ex 1632  df-nf 1636  df-sb 1762  df-eu 2240  df-mo 2241  df-clab 2386  df-cleq 2392  df-clel 2395  df-nfc 2550  df-ne 2598  df-nel 2599  df-ral 2756  df-rex 2757  df-reu 2758  df-rmo 2759  df-rab 2760  df-v 3058  df-sbc 3275  df-csb 3371  df-dif 3414  df-un 3416  df-in 3418  df-ss 3425  df-pss 3427  df-nul 3736  df-if 3883  df-pw 3954  df-sn 3970  df-pr 3972  df-tp 3974  df-op 3976  df-uni 4189  df-int 4225  df-iun 4270  df-iin 4271  df-br 4393  df-opab 4451  df-mpt 4452  df-tr 4487  df-eprel 4731  df-id 4735  df-po 4741  df-so 4742  df-fr 4779  df-se 4780  df-we 4781  df-ord 4822  df-on 4823  df-lim 4824  df-suc 4825  df-xp 4946  df-rel 4947  df-cnv 4948  df-co 4949  df-dm 4950  df-rn 4951  df-res 4952  df-ima 4953  df-iota 5487  df-fun 5525  df-fn 5526  df-f 5527  df-f1 5528  df-fo 5529  df-f1o 5530  df-fv 5531  df-isom 5532  df-riota 6194  df-ov 6235  df-oprab 6236  df-mpt2 6237  df-of 6475  df-om 6637  df-1st 6736  df-2nd 6737  df-supp 6855  df-recs 6997  df-rdg 7031  df-1o 7085  df-2o 7086  df-oadd 7089  df-er 7266  df-map 7377  df-pm 7378  df-ixp 7426  df-en 7473  df-dom 7474  df-sdom 7475  df-fin 7476  df-fsupp 7782  df-fi 7823  df-sup 7853  df-oi 7887  df-card 8270  df-cda 8498  df-pnf 9578  df-mnf 9579  df-xr 9580  df-ltxr 9581  df-le 9582  df-sub 9761  df-neg 9762  df-div 10166  df-nn 10495  df-2 10553  df-3 10554  df-4 10555  df-5 10556  df-6 10557  df-7 10558  df-8 10559  df-9 10560  df-10 10561  df-n0 10755  df-z 10824  df-dec 10938  df-uz 11044  df-q 11144  df-rp 11182  df-xneg 11287  df-xadd 11288  df-xmul 11289  df-ioo 11502  df-ioc 11503  df-ico 11504  df-icc 11505  df-fz 11642  df-fzo 11766  df-fl 11877  df-mod 11946  df-seq 12060  df-exp 12119  df-fac 12306  df-bc 12333  df-hash 12358  df-shft 12954  df-cj 12986  df-re 12987  df-im 12988  df-sqrt 13122  df-abs 13123  df-limsup 13348  df-clim 13365  df-rlim 13366  df-sum 13563  df-ef 13902  df-sin 13904  df-cos 13905  df-pi 13907  df-struct 14733  df-ndx 14734  df-slot 14735  df-base 14736  df-sets 14737  df-ress 14738  df-plusg 14812  df-mulr 14813  df-starv 14814  df-sca 14815  df-vsca 14816  df-ip 14817  df-tset 14818  df-ple 14819  df-ds 14821  df-unif 14822  df-hom 14823  df-cco 14824  df-rest 14927  df-topn 14928  df-0g 14946  df-gsum 14947  df-topgen 14948  df-pt 14949  df-prds 14952  df-ordt 15005  df-xrs 15006  df-qtop 15011  df-imas 15012  df-xps 15014  df-mre 15090  df-mrc 15091  df-acs 15093  df-ps 16044  df-tsr 16045  df-plusf 16085  df-mgm 16086  df-sgrp 16125  df-mnd 16135  df-mhm 16180  df-submnd 16181  df-grp 16271  df-minusg 16272  df-sbg 16273  df-mulg 16274  df-subg 16412  df-cntz 16569  df-cmn 17014  df-abl 17015  df-mgp 17352  df-ur 17364  df-ring 17410  df-cring 17411  df-subrg 17637  df-abv 17676  df-lmod 17724  df-scaf 17725  df-sra 18028  df-rgmod 18029  df-psmet 18621  df-xmet 18622  df-met 18623  df-bl 18624  df-mopn 18625  df-fbas 18626  df-fg 18627  df-cnfld 18631  df-top 19581  df-bases 19583  df-topon 19584  df-topsp 19585  df-cld 19702  df-ntr 19703  df-cls 19704  df-nei 19782  df-lp 19820  df-perf 19821  df-cn 19911  df-cnp 19912  df-haus 19999  df-tx 20245  df-hmeo 20438  df-fil 20529  df-fm 20621  df-flim 20622  df-flf 20623  df-tmd 20753  df-tgp 20754  df-tsms 20807  df-trg 20844  df-xms 21005  df-ms 21006  df-tms 21007  df-nm 21285  df-ngp 21286  df-nrg 21288  df-nlm 21289  df-ii 21563  df-cncf 21564  df-limc 22452  df-dv 22453  df-log 23126  df-esum 28356
This theorem is referenced by:  hasheuni  28413  esumcvg  28414  esumcvgre  28419  voliune  28559  volfiniune  28560
  Copyright terms: Public domain W3C validator