Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumpfinval Structured version   Unicode version

Theorem esumpfinval 28304
Description: The value of the extended sum of a finite set of nonnegative finite terms (Contributed by Thierry Arnoux, 28-Jun-2017.) (Proof shortened by AV, 25-Jul-2019.)
Hypotheses
Ref Expression
esumpfinval.a  |-  ( ph  ->  A  e.  Fin )
esumpfinval.b  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  ( 0 [,) +oo ) )
Assertion
Ref Expression
esumpfinval  |-  ( ph  -> Σ* k  e.  A B  = 
sum_ k  e.  A  B )
Distinct variable groups:    A, k    ph, k
Allowed substitution hint:    B( k)

Proof of Theorem esumpfinval
StepHypRef Expression
1 df-esum 28257 . . . 4  |- Σ* k  e.  A B  =  U. (
( RR*ss  ( 0 [,] +oo ) ) tsums  ( k  e.  A  |->  B ) )
2 xrge0base 27907 . . . . . 6  |-  ( 0 [,] +oo )  =  ( Base `  ( RR*ss  ( 0 [,] +oo ) ) )
3 xrge00 27908 . . . . . 6  |-  0  =  ( 0g `  ( RR*ss  ( 0 [,] +oo ) ) )
4 xrge0cmn 18655 . . . . . . 7  |-  ( RR*ss  ( 0 [,] +oo ) )  e. CMnd
54a1i 11 . . . . . 6  |-  ( ph  ->  ( RR*ss  ( 0 [,] +oo ) )  e. CMnd )
6 xrge0tps 28159 . . . . . . 7  |-  ( RR*ss  ( 0 [,] +oo ) )  e.  TopSp
76a1i 11 . . . . . 6  |-  ( ph  ->  ( RR*ss  ( 0 [,] +oo ) )  e.  TopSp )
8 esumpfinval.a . . . . . 6  |-  ( ph  ->  A  e.  Fin )
9 icossicc 11614 . . . . . . . 8  |-  ( 0 [,) +oo )  C_  ( 0 [,] +oo )
10 esumpfinval.b . . . . . . . 8  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  ( 0 [,) +oo ) )
119, 10sseldi 3487 . . . . . . 7  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  ( 0 [,] +oo ) )
12 eqid 2454 . . . . . . 7  |-  ( k  e.  A  |->  B )  =  ( k  e.  A  |->  B )
1311, 12fmptd 6031 . . . . . 6  |-  ( ph  ->  ( k  e.  A  |->  B ) : A --> ( 0 [,] +oo ) )
14 c0ex 9579 . . . . . . . 8  |-  0  e.  _V
1514a1i 11 . . . . . . 7  |-  ( ph  ->  0  e.  _V )
1612, 8, 10, 15fsuppmptdm 7832 . . . . . 6  |-  ( ph  ->  ( k  e.  A  |->  B ) finSupp  0 )
17 xrge0topn 28160 . . . . . . 7  |-  ( TopOpen `  ( RR*ss  ( 0 [,] +oo ) ) )  =  ( (ordTop `  <_  )t  ( 0 [,] +oo )
)
1817eqcomi 2467 . . . . . 6  |-  ( (ordTop `  <_  )t  ( 0 [,] +oo ) )  =  (
TopOpen `  ( RR*ss  (
0 [,] +oo )
) )
19 xrhaus 27818 . . . . . . . 8  |-  (ordTop `  <_  )  e.  Haus
20 ovex 6298 . . . . . . . 8  |-  ( 0 [,] +oo )  e. 
_V
21 resthaus 20036 . . . . . . . 8  |-  ( ( (ordTop `  <_  )  e. 
Haus  /\  ( 0 [,] +oo )  e.  _V )  ->  ( (ordTop `  <_  )t  ( 0 [,] +oo ) )  e.  Haus )
2219, 20, 21mp2an 670 . . . . . . 7  |-  ( (ordTop `  <_  )t  ( 0 [,] +oo ) )  e.  Haus
2322a1i 11 . . . . . 6  |-  ( ph  ->  ( (ordTop `  <_  )t  ( 0 [,] +oo )
)  e.  Haus )
242, 3, 5, 7, 8, 13, 16, 18, 23haustsmsid 20805 . . . . 5  |-  ( ph  ->  ( ( RR*ss  (
0 [,] +oo )
) tsums  ( k  e.  A  |->  B ) )  =  { ( (
RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  A  |->  B ) ) } )
2524unieqd 4245 . . . 4  |-  ( ph  ->  U. ( ( RR*ss  ( 0 [,] +oo ) ) tsums  ( k  e.  A  |->  B ) )  =  U. {
( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  A  |->  B ) ) } )
261, 25syl5eq 2507 . . 3  |-  ( ph  -> Σ* k  e.  A B  = 
U. { ( (
RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  A  |->  B ) ) } )
27 ovex 6298 . . . 4  |-  ( (
RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  A  |->  B ) )  e. 
_V
2827unisn 4250 . . 3  |-  U. {
( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  A  |->  B ) ) }  =  ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  A  |->  B ) )
2926, 28syl6eq 2511 . 2  |-  ( ph  -> Σ* k  e.  A B  =  ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  A  |->  B ) ) )
3010, 12fmptd 6031 . . 3  |-  ( ph  ->  ( k  e.  A  |->  B ) : A --> ( 0 [,) +oo ) )
31 esumpfinvallem 28303 . . 3  |-  ( ( A  e.  Fin  /\  ( k  e.  A  |->  B ) : A --> ( 0 [,) +oo ) )  ->  (fld  gsumg  ( k  e.  A  |->  B ) )  =  ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  A  |->  B ) ) )
328, 30, 31syl2anc 659 . 2  |-  ( ph  ->  (fld 
gsumg  ( k  e.  A  |->  B ) )  =  ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  A  |->  B ) ) )
33 rge0ssre 11631 . . . . 5  |-  ( 0 [,) +oo )  C_  RR
34 ax-resscn 9538 . . . . 5  |-  RR  C_  CC
3533, 34sstri 3498 . . . 4  |-  ( 0 [,) +oo )  C_  CC
3635, 10sseldi 3487 . . 3  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
378, 36gsumfsum 18679 . 2  |-  ( ph  ->  (fld 
gsumg  ( k  e.  A  |->  B ) )  = 
sum_ k  e.  A  B )
3829, 32, 373eqtr2d 2501 1  |-  ( ph  -> Σ* k  e.  A B  = 
sum_ k  e.  A  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1398    e. wcel 1823   _Vcvv 3106   {csn 4016   U.cuni 4235    |-> cmpt 4497   -->wf 5566   ` cfv 5570  (class class class)co 6270   Fincfn 7509   CCcc 9479   RRcr 9480   0cc0 9481   +oocpnf 9614    <_ cle 9618   [,)cico 11534   [,]cicc 11535   sum_csu 13590   ↾s cress 14717   ↾t crest 14910   TopOpenctopn 14911    gsumg cgsu 14930  ordTopcordt 14988   RR*scxrs 14989  CMndccmn 16997  ℂfldccnfld 18615   TopSpctps 19564   Hauscha 19976   tsums ctsu 20790  Σ*cesum 28256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-inf2 8049  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559  ax-addf 9560  ax-mulf 9561
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-fal 1404  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-iin 4318  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-se 4828  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-isom 5579  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-1st 6773  df-2nd 6774  df-supp 6892  df-recs 7034  df-rdg 7068  df-1o 7122  df-oadd 7126  df-er 7303  df-map 7414  df-en 7510  df-dom 7511  df-sdom 7512  df-fin 7513  df-fsupp 7822  df-fi 7863  df-sup 7893  df-oi 7927  df-card 8311  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-div 10203  df-nn 10532  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-7 10595  df-8 10596  df-9 10597  df-10 10598  df-n0 10792  df-z 10861  df-dec 10977  df-uz 11083  df-rp 11222  df-xadd 11322  df-ico 11538  df-icc 11539  df-fz 11676  df-fzo 11800  df-seq 12090  df-exp 12149  df-hash 12388  df-cj 13014  df-re 13015  df-im 13016  df-sqrt 13150  df-abs 13151  df-clim 13393  df-sum 13591  df-struct 14718  df-ndx 14719  df-slot 14720  df-base 14721  df-sets 14722  df-ress 14723  df-plusg 14797  df-mulr 14798  df-starv 14799  df-tset 14803  df-ple 14804  df-ds 14806  df-unif 14807  df-rest 14912  df-topn 14913  df-0g 14931  df-gsum 14932  df-topgen 14933  df-ordt 14990  df-xrs 14991  df-ps 16029  df-tsr 16030  df-mgm 16071  df-sgrp 16110  df-mnd 16120  df-submnd 16166  df-grp 16256  df-minusg 16257  df-cntz 16554  df-cmn 16999  df-abl 17000  df-mgp 17337  df-ur 17349  df-ring 17395  df-cring 17396  df-fbas 18611  df-fg 18612  df-cnfld 18616  df-top 19566  df-bases 19568  df-topon 19569  df-topsp 19570  df-cld 19687  df-ntr 19688  df-cls 19689  df-nei 19766  df-cn 19895  df-haus 19983  df-fil 20513  df-fm 20605  df-flim 20606  df-flf 20607  df-tsms 20791  df-esum 28257
This theorem is referenced by:  hasheuni  28314  esumcvg  28315  sibfof  28546
  Copyright terms: Public domain W3C validator