Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumcvg Structured version   Unicode version

Theorem esumcvg 26471
Description: The sequence of partial sums of an extended sum converges to the whole sum. cf. fsumcvg2 13200. (Contributed by Thierry Arnoux, 5-Sep-2017.)
Hypotheses
Ref Expression
esumcvg.j  |-  J  =  ( TopOpen `  ( RR*ss  ( 0 [,] +oo ) ) )
esumcvg.f  |-  F  =  ( n  e.  NN  |-> Σ* k  e.  ( 1 ... n
) A )
esumcvg.a  |-  ( (
ph  /\  k  e.  NN )  ->  A  e.  ( 0 [,] +oo ) )
esumcvg.m  |-  ( k  =  m  ->  A  =  B )
Assertion
Ref Expression
esumcvg  |-  ( ph  ->  F ( ~~> t `  J )Σ* k  e.  NN A
)
Distinct variable groups:    m, n, A    k, n, B    k, m, F, n    k, J, n    ph, k, m, n
Allowed substitution hints:    A( k)    B( m)    J( m)

Proof of Theorem esumcvg
Dummy variables  l  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 10892 . . . . . 6  |-  NN  =  ( ZZ>= `  1 )
2 1z 10672 . . . . . . 7  |-  1  e.  ZZ
32a1i 11 . . . . . 6  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  F  e.  dom  ~~>  )  ->  1  e.  ZZ )
4 simpr 458 . . . . . 6  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  F  e.  dom  ~~>  )  ->  F  e.  dom  ~~>  )
5 mnfxr 11090 . . . . . . . . . . 11  |- -oo  e.  RR*
6 pnfxr 11088 . . . . . . . . . . 11  |- +oo  e.  RR*
7 mnflt0 11101 . . . . . . . . . . 11  |- -oo  <  0
8 pnfge 11106 . . . . . . . . . . . 12  |-  ( +oo  e.  RR*  -> +oo  <_ +oo )
96, 8ax-mp 5 . . . . . . . . . . 11  |- +oo  <_ +oo
10 icossioo 25995 . . . . . . . . . . 11  |-  ( ( ( -oo  e.  RR*  /\ +oo  e.  RR* )  /\  ( -oo  <  0  /\ +oo  <_ +oo ) )  -> 
( 0 [,) +oo )  C_  ( -oo (,) +oo ) )
115, 6, 7, 9, 10mp4an 668 . . . . . . . . . 10  |-  ( 0 [,) +oo )  C_  ( -oo (,) +oo )
12 ioomax 11366 . . . . . . . . . 10  |-  ( -oo (,) +oo )  =  RR
1311, 12sseqtri 3385 . . . . . . . . 9  |-  ( 0 [,) +oo )  C_  RR
14 ax-resscn 9335 . . . . . . . . 9  |-  RR  C_  CC
1513, 14sstri 3362 . . . . . . . 8  |-  ( 0 [,) +oo )  C_  CC
16 esumcvg.m . . . . . . . . . . . . 13  |-  ( k  =  m  ->  A  =  B )
1716eleq1d 2507 . . . . . . . . . . . 12  |-  ( k  =  m  ->  ( A  e.  ( 0 [,) +oo )  <->  B  e.  ( 0 [,) +oo ) ) )
1817cbvralv 2945 . . . . . . . . . . 11  |-  ( A. k  e.  NN  A  e.  ( 0 [,) +oo ) 
<-> 
A. m  e.  NN  B  e.  ( 0 [,) +oo ) )
19 rsp 2774 . . . . . . . . . . 11  |-  ( A. k  e.  NN  A  e.  ( 0 [,) +oo )  ->  ( k  e.  NN  ->  A  e.  ( 0 [,) +oo ) ) )
2018, 19sylbir 213 . . . . . . . . . 10  |-  ( A. m  e.  NN  B  e.  ( 0 [,) +oo )  ->  ( k  e.  NN  ->  A  e.  ( 0 [,) +oo ) ) )
2120adantl 463 . . . . . . . . 9  |-  ( (
ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo )
)  ->  ( k  e.  NN  ->  A  e.  ( 0 [,) +oo ) ) )
2221imp 429 . . . . . . . 8  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  k  e.  NN )  ->  A  e.  ( 0 [,) +oo ) )
2315, 22sseldi 3351 . . . . . . 7  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  k  e.  NN )  ->  A  e.  CC )
2423adantlr 709 . . . . . 6  |-  ( ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  F  e.  dom  ~~>  )  /\  k  e.  NN )  ->  A  e.  CC )
25 esumcvg.f . . . . . . . . 9  |-  F  =  ( n  e.  NN  |-> Σ* k  e.  ( 1 ... n
) A )
26 fzfid 11791 . . . . . . . . . . 11  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  n  e.  NN )  ->  (
1 ... n )  e. 
Fin )
27 elfznn 11474 . . . . . . . . . . . . 13  |-  ( k  e.  ( 1 ... n )  ->  k  e.  NN )
2827, 22sylan2 471 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  k  e.  ( 1 ... n
) )  ->  A  e.  ( 0 [,) +oo ) )
2928adantlr 709 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  n  e.  NN )  /\  k  e.  ( 1 ... n
) )  ->  A  e.  ( 0 [,) +oo ) )
3026, 29esumpfinval 26460 . . . . . . . . . 10  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  n  e.  NN )  -> Σ* k  e.  ( 1 ... n ) A  =  sum_ k  e.  ( 1 ... n
) A )
3130mpteq2dva 4375 . . . . . . . . 9  |-  ( (
ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo )
)  ->  ( n  e.  NN  |-> Σ* k  e.  ( 1 ... n ) A )  =  ( n  e.  NN  |->  sum_ k  e.  ( 1 ... n
) A ) )
3225, 31syl5eq 2485 . . . . . . . 8  |-  ( (
ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo )
)  ->  F  =  ( n  e.  NN  |->  sum_ k  e.  ( 1 ... n ) A ) )
3315, 29sseldi 3351 . . . . . . . . 9  |-  ( ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  n  e.  NN )  /\  k  e.  ( 1 ... n
) )  ->  A  e.  CC )
3426, 33fsumcl 13206 . . . . . . . 8  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  n  e.  NN )  ->  sum_ k  e.  ( 1 ... n
) A  e.  CC )
3532, 34fvmpt2d 5780 . . . . . . 7  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  n  e.  NN )  ->  ( F `  n )  =  sum_ k  e.  ( 1 ... n ) A )
3635adantlr 709 . . . . . 6  |-  ( ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  F  e.  dom  ~~>  )  /\  n  e.  NN )  ->  ( F `  n )  =  sum_ k  e.  ( 1 ... n ) A )
371, 3, 4, 24, 36isumclim3 13222 . . . . 5  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  F  e.  dom  ~~>  )  ->  F  ~~>  sum_ k  e.  NN  A
)
38 esumcvg.j . . . . . 6  |-  J  =  ( TopOpen `  ( RR*ss  ( 0 [,] +oo ) ) )
3926, 29fsumrp0cl 26091 . . . . . . . . 9  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  n  e.  NN )  ->  sum_ k  e.  ( 1 ... n
) A  e.  ( 0 [,) +oo )
)
4030, 39eqeltrd 2515 . . . . . . . 8  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  n  e.  NN )  -> Σ* k  e.  ( 1 ... n ) A  e.  ( 0 [,) +oo ) )
4140, 25fmptd 5864 . . . . . . 7  |-  ( (
ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo )
)  ->  F : NN
--> ( 0 [,) +oo ) )
4241adantr 462 . . . . . 6  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  F  e.  dom  ~~>  )  ->  F : NN --> ( 0 [,) +oo ) )
43 simplll 752 . . . . . . . . 9  |-  ( ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  F  e.  dom  ~~>  )  /\  k  e.  NN )  ->  ph )
44 eqidd 2442 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  ( m  e.  NN  |->  B )  =  ( m  e.  NN  |->  B ) )
45 eqcom 2443 . . . . . . . . . . . 12  |-  ( k  =  m  <->  m  =  k )
46 eqcom 2443 . . . . . . . . . . . 12  |-  ( A  =  B  <->  B  =  A )
4716, 45, 463imtr3i 265 . . . . . . . . . . 11  |-  ( m  =  k  ->  B  =  A )
4847adantl 463 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN )  /\  m  =  k )  ->  B  =  A )
49 simpr 458 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  k  e.  NN )
50 esumcvg.a . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  A  e.  ( 0 [,] +oo ) )
5144, 48, 49, 50fvmptd 5776 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( m  e.  NN  |->  B ) `  k )  =  A )
5243, 51sylancom 662 . . . . . . . 8  |-  ( ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  F  e.  dom  ~~>  )  /\  k  e.  NN )  ->  (
( m  e.  NN  |->  B ) `  k
)  =  A )
5322adantlr 709 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  F  e.  dom  ~~>  )  /\  k  e.  NN )  ->  A  e.  ( 0 [,) +oo ) )
54 elrege0 11388 . . . . . . . . . 10  |-  ( A  e.  ( 0 [,) +oo )  <->  ( A  e.  RR  /\  0  <_  A ) )
5553, 54sylib 196 . . . . . . . . 9  |-  ( ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  F  e.  dom  ~~>  )  /\  k  e.  NN )  ->  ( A  e.  RR  /\  0  <_  A ) )
5655simpld 456 . . . . . . . 8  |-  ( ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  F  e.  dom  ~~>  )  /\  k  e.  NN )  ->  A  e.  RR )
57 ovex 6115 . . . . . . . . . . . . . . 15  |-  ( 1 ... n )  e. 
_V
58 simpll 748 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( 1 ... n
) )  ->  ph )
5927adantl 463 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( 1 ... n
) )  ->  k  e.  NN )
6058, 59, 50syl2anc 656 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( 1 ... n
) )  ->  A  e.  ( 0 [,] +oo ) )
6160ralrimiva 2797 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  e.  NN )  ->  A. k  e.  ( 1 ... n
) A  e.  ( 0 [,] +oo )
)
62 nfcv 2577 . . . . . . . . . . . . . . . 16  |-  F/_ k
( 1 ... n
)
6362esumcl 26422 . . . . . . . . . . . . . . 15  |-  ( ( ( 1 ... n
)  e.  _V  /\  A. k  e.  ( 1 ... n ) A  e.  ( 0 [,] +oo ) )  -> Σ* k  e.  ( 1 ... n ) A  e.  ( 0 [,] +oo ) )
6457, 61, 63sylancr 658 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  NN )  -> Σ* k  e.  ( 1 ... n ) A  e.  ( 0 [,] +oo ) )
6564, 25fmptd 5864 . . . . . . . . . . . . 13  |-  ( ph  ->  F : NN --> ( 0 [,] +oo ) )
66 ffn 5556 . . . . . . . . . . . . 13  |-  ( F : NN --> ( 0 [,] +oo )  ->  F  Fn  NN )
6765, 66syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  F  Fn  NN )
6867adantr 462 . . . . . . . . . . 11  |-  ( (
ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo )
)  ->  F  Fn  NN )
69 seqfn 11814 . . . . . . . . . . . . . 14  |-  ( 1  e.  ZZ  ->  seq 1 (  +  , 
( m  e.  NN  |->  B ) )  Fn  ( ZZ>= `  1 )
)
702, 69ax-mp 5 . . . . . . . . . . . . 13  |-  seq 1
(  +  ,  ( m  e.  NN  |->  B ) )  Fn  ( ZZ>=
`  1 )
711fneq2i 5503 . . . . . . . . . . . . 13  |-  (  seq 1 (  +  , 
( m  e.  NN  |->  B ) )  Fn  NN  <->  seq 1 (  +  ,  ( m  e.  NN  |->  B ) )  Fn  ( ZZ>= `  1
) )
7270, 71mpbir 209 . . . . . . . . . . . 12  |-  seq 1
(  +  ,  ( m  e.  NN  |->  B ) )  Fn  NN
7372a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo )
)  ->  seq 1
(  +  ,  ( m  e.  NN  |->  B ) )  Fn  NN )
74 simplll 752 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  n  e.  NN )  /\  k  e.  ( 1 ... n
) )  ->  ph )
7527, 51sylan2 471 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( 1 ... n
) )  ->  (
( m  e.  NN  |->  B ) `  k
)  =  A )
7674, 75sylancom 662 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  n  e.  NN )  /\  k  e.  ( 1 ... n
) )  ->  (
( m  e.  NN  |->  B ) `  k
)  =  A )
77 simpr 458 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  n  e.  NN )  ->  n  e.  NN )
7877, 1syl6eleq 2531 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  n  e.  NN )  ->  n  e.  ( ZZ>= `  1 )
)
7976, 78, 33fsumser 13203 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  n  e.  NN )  ->  sum_ k  e.  ( 1 ... n
) A  =  (  seq 1 (  +  ,  ( m  e.  NN  |->  B ) ) `
 n ) )
8035, 79eqtrd 2473 . . . . . . . . . . 11  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  n  e.  NN )  ->  ( F `  n )  =  (  seq 1
(  +  ,  ( m  e.  NN  |->  B ) ) `  n
) )
8168, 73, 80eqfnfvd 5797 . . . . . . . . . 10  |-  ( (
ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo )
)  ->  F  =  seq 1 (  +  , 
( m  e.  NN  |->  B ) ) )
8281adantr 462 . . . . . . . . 9  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  F  e.  dom  ~~>  )  ->  F  =  seq 1 (  +  ,  ( m  e.  NN  |->  B ) ) )
8382, 4eqeltrrd 2516 . . . . . . . 8  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  F  e.  dom  ~~>  )  ->  seq 1 (  +  , 
( m  e.  NN  |->  B ) )  e. 
dom 
~~>  )
841, 3, 52, 56, 83isumrecl 13228 . . . . . . 7  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  F  e.  dom  ~~>  )  ->  sum_ k  e.  NN  A  e.  RR )
8555simprd 460 . . . . . . . 8  |-  ( ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  F  e.  dom  ~~>  )  /\  k  e.  NN )  ->  0  <_  A )
861, 3, 52, 56, 83, 85isumge0 13229 . . . . . . 7  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  F  e.  dom  ~~>  )  ->  0  <_ 
sum_ k  e.  NN  A )
87 elrege0 11388 . . . . . . 7  |-  ( sum_ k  e.  NN  A  e.  ( 0 [,) +oo ) 
<->  ( sum_ k  e.  NN  A  e.  RR  /\  0  <_ 
sum_ k  e.  NN  A ) )
8884, 86, 87sylanbrc 659 . . . . . 6  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  F  e.  dom  ~~>  )  ->  sum_ k  e.  NN  A  e.  ( 0 [,) +oo )
)
89 ssid 3372 . . . . . 6  |-  ( 0 [,) +oo )  C_  ( 0 [,) +oo )
9038, 42, 88, 89lmlimxrge0 26314 . . . . 5  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  F  e.  dom  ~~>  )  ->  ( F ( ~~> t `  J ) sum_ k  e.  NN  A  <->  F  ~~>  sum_ k  e.  NN  A ) )
9137, 90mpbird 232 . . . 4  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  F  e.  dom  ~~>  )  ->  F
( ~~> t `  J
) sum_ k  e.  NN  A )
9225, 4syl5eqelr 2526 . . . . . 6  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  F  e.  dom  ~~>  )  ->  (
n  e.  NN  |-> Σ* k  e.  ( 1 ... n
) A )  e. 
dom 
~~>  )
9331eleq1d 2507 . . . . . . 7  |-  ( (
ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo )
)  ->  ( (
n  e.  NN  |-> Σ* k  e.  ( 1 ... n
) A )  e. 
dom 
~~> 
<->  ( n  e.  NN  |->  sum_ k  e.  ( 1 ... n ) A )  e.  dom  ~~>  ) )
9493adantr 462 . . . . . 6  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  F  e.  dom  ~~>  )  ->  (
( n  e.  NN  |-> Σ* k  e.  ( 1 ... n
) A )  e. 
dom 
~~> 
<->  ( n  e.  NN  |->  sum_ k  e.  ( 1 ... n ) A )  e.  dom  ~~>  ) )
9592, 94mpbid 210 . . . . 5  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  F  e.  dom  ~~>  )  ->  (
n  e.  NN  |->  sum_ k  e.  ( 1 ... n ) A )  e.  dom  ~~>  )
9653, 16, 95esumpcvgval 26463 . . . 4  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  F  e.  dom  ~~>  )  -> Σ* k  e.  NN A  =  sum_ k  e.  NN  A )
9791, 96breqtrrd 4315 . . 3  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  F  e.  dom  ~~>  )  ->  F
( ~~> t `  J
)Σ* k  e.  NN A
)
9841adantr 462 . . . . 5  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e.  dom  ~~>  )  ->  F : NN --> ( 0 [,) +oo ) )
99 simpr 458 . . . . . . 7  |-  ( ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e.  dom  ~~>  )  /\  n  e.  NN )  ->  n  e.  NN )
10099nnzd 10742 . . . . . . . 8  |-  ( ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e.  dom  ~~>  )  /\  n  e.  NN )  ->  n  e.  ZZ )
101 uzid 10871 . . . . . . . 8  |-  ( n  e.  ZZ  ->  n  e.  ( ZZ>= `  n )
)
102 peano2uz 10904 . . . . . . . 8  |-  ( n  e.  ( ZZ>= `  n
)  ->  ( n  +  1 )  e.  ( ZZ>= `  n )
)
103100, 101, 1023syl 20 . . . . . . 7  |-  ( ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e.  dom  ~~>  )  /\  n  e.  NN )  ->  ( n  +  1 )  e.  ( ZZ>= `  n ) )
104 simplll 752 . . . . . . . 8  |-  ( ( ( ( ( ph  /\ 
A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e. 
dom 
~~>  )  /\  n  e.  NN )  /\  k  e.  NN )  ->  ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo )
) )
105104, 22sylancom 662 . . . . . . 7  |-  ( ( ( ( ( ph  /\ 
A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e. 
dom 
~~>  )  /\  n  e.  NN )  /\  k  e.  NN )  ->  A  e.  ( 0 [,) +oo ) )
10699, 103, 105esumpmono 26464 . . . . . 6  |-  ( ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e.  dom  ~~>  )  /\  n  e.  NN )  -> Σ* k  e.  ( 1 ... n ) A  <_ Σ* k  e.  ( 1 ... (
n  +  1 ) ) A )
10735, 30eqtr4d 2476 . . . . . . 7  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  n  e.  NN )  ->  ( F `  n )  = Σ* k  e.  ( 1 ... n ) A )
108107adantlr 709 . . . . . 6  |-  ( ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e.  dom  ~~>  )  /\  n  e.  NN )  ->  ( F `  n
)  = Σ* k  e.  ( 1 ... n ) A )
109 oveq2 6098 . . . . . . . . . . 11  |-  ( l  =  n  ->  (
1 ... l )  =  ( 1 ... n
) )
110 esumeq1 26426 . . . . . . . . . . 11  |-  ( ( 1 ... l )  =  ( 1 ... n )  -> Σ* k  e.  ( 1 ... l ) A  = Σ* k  e.  ( 1 ... n ) A )
111109, 110syl 16 . . . . . . . . . 10  |-  ( l  =  n  -> Σ* k  e.  ( 1 ... l ) A  = Σ* k  e.  ( 1 ... n ) A )
112111cbvmptv 4380 . . . . . . . . 9  |-  ( l  e.  NN  |-> Σ* k  e.  ( 1 ... l ) A )  =  ( n  e.  NN  |-> Σ* k  e.  ( 1 ... n
) A )
11325, 112eqtr4i 2464 . . . . . . . 8  |-  F  =  ( l  e.  NN  |-> Σ* k  e.  ( 1 ... l
) A )
114113a1i 11 . . . . . . 7  |-  ( ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e.  dom  ~~>  )  /\  n  e.  NN )  ->  F  =  ( l  e.  NN  |-> Σ* k  e.  ( 1 ... l ) A ) )
115 simpr3 991 . . . . . . . . 9  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  ( -.  F  e.  dom  ~~>  /\  n  e.  NN  /\  l  =  ( n  +  1 ) ) )  ->  l  =  ( n  +  1
) )
116 oveq2 6098 . . . . . . . . 9  |-  ( l  =  ( n  + 
1 )  ->  (
1 ... l )  =  ( 1 ... (
n  +  1 ) ) )
117 esumeq1 26426 . . . . . . . . 9  |-  ( ( 1 ... l )  =  ( 1 ... ( n  +  1 ) )  -> Σ* k  e.  ( 1 ... l ) A  = Σ* k  e.  ( 1 ... ( n  +  1 ) ) A )
118115, 116, 1173syl 20 . . . . . . . 8  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  ( -.  F  e.  dom  ~~>  /\  n  e.  NN  /\  l  =  ( n  +  1 ) ) )  -> Σ* k  e.  ( 1 ... l ) A  = Σ* k  e.  ( 1 ... ( n  +  1 ) ) A )
1191183anassrs 1204 . . . . . . 7  |-  ( ( ( ( ( ph  /\ 
A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e. 
dom 
~~>  )  /\  n  e.  NN )  /\  l  =  ( n  + 
1 ) )  -> Σ* k  e.  ( 1 ... l
) A  = Σ* k  e.  ( 1 ... (
n  +  1 ) ) A )
12099peano2nnd 10335 . . . . . . 7  |-  ( ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e.  dom  ~~>  )  /\  n  e.  NN )  ->  ( n  +  1 )  e.  NN )
121 ovex 6115 . . . . . . . 8  |-  ( 1 ... ( n  + 
1 ) )  e. 
_V
122 simp-4l 760 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\ 
A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e. 
dom 
~~>  )  /\  n  e.  NN )  /\  k  e.  ( 1 ... (
n  +  1 ) ) )  ->  ph )
123 elfznn 11474 . . . . . . . . . . 11  |-  ( k  e.  ( 1 ... ( n  +  1 ) )  ->  k  e.  NN )
124123adantl 463 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\ 
A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e. 
dom 
~~>  )  /\  n  e.  NN )  /\  k  e.  ( 1 ... (
n  +  1 ) ) )  ->  k  e.  NN )
125122, 124, 50syl2anc 656 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\ 
A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e. 
dom 
~~>  )  /\  n  e.  NN )  /\  k  e.  ( 1 ... (
n  +  1 ) ) )  ->  A  e.  ( 0 [,] +oo ) )
126125ralrimiva 2797 . . . . . . . 8  |-  ( ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e.  dom  ~~>  )  /\  n  e.  NN )  ->  A. k  e.  ( 1 ... ( n  +  1 ) ) A  e.  ( 0 [,] +oo ) )
127 nfcv 2577 . . . . . . . . 9  |-  F/_ k
( 1 ... (
n  +  1 ) )
128127esumcl 26422 . . . . . . . 8  |-  ( ( ( 1 ... (
n  +  1 ) )  e.  _V  /\  A. k  e.  ( 1 ... ( n  + 
1 ) ) A  e.  ( 0 [,] +oo ) )  -> Σ* k  e.  ( 1 ... ( n  +  1 ) ) A  e.  ( 0 [,] +oo ) )
129121, 126, 128sylancr 658 . . . . . . 7  |-  ( ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e.  dom  ~~>  )  /\  n  e.  NN )  -> Σ* k  e.  ( 1 ... ( n  +  1 ) ) A  e.  ( 0 [,] +oo ) )
130114, 119, 120, 129fvmptd 5776 . . . . . 6  |-  ( ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e.  dom  ~~>  )  /\  n  e.  NN )  ->  ( F `  (
n  +  1 ) )  = Σ* k  e.  ( 1 ... ( n  +  1 ) ) A )
131106, 108, 1303brtr4d 4319 . . . . 5  |-  ( ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e.  dom  ~~>  )  /\  n  e.  NN )  ->  ( F `  n
)  <_  ( F `  ( n  +  1 ) ) )
132 simpr 458 . . . . 5  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e.  dom  ~~>  )  ->  -.  F  e.  dom  ~~>  )
13338, 98, 131, 132lmdvglim 26320 . . . 4  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e.  dom  ~~>  )  ->  F ( ~~> t `  J ) +oo )
134 nfv 1678 . . . . . . 7  |-  F/ k ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )
135 nfcv 2577 . . . . . . 7  |-  F/_ k NN
136 nnex 10324 . . . . . . . 8  |-  NN  e.  _V
137136a1i 11 . . . . . . 7  |-  ( (
ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo )
)  ->  NN  e.  _V )
13850adantlr 709 . . . . . . 7  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  k  e.  NN )  ->  A  e.  ( 0 [,] +oo ) )
139 simpr 458 . . . . . . . . 9  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  x  e.  ( ~P NN  i^i  Fin ) )  ->  x  e.  ( ~P NN  i^i  Fin ) )
140 simpll 748 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  x  e.  ( ~P NN  i^i  Fin ) )  /\  k  e.  x )  ->  ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo )
) )
141 inss1 3567 . . . . . . . . . . . . . 14  |-  ( ~P NN  i^i  Fin )  C_ 
~P NN
142 simplr 749 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  x  e.  ( ~P NN  i^i  Fin ) )  /\  k  e.  x )  ->  x  e.  ( ~P NN  i^i  Fin ) )
143141, 142sseldi 3351 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  x  e.  ( ~P NN  i^i  Fin ) )  /\  k  e.  x )  ->  x  e.  ~P NN )
144143elpwid 3867 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  x  e.  ( ~P NN  i^i  Fin ) )  /\  k  e.  x )  ->  x  C_  NN )
145 simpr 458 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  x  e.  ( ~P NN  i^i  Fin ) )  /\  k  e.  x )  ->  k  e.  x )
146144, 145sseldd 3354 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  x  e.  ( ~P NN  i^i  Fin ) )  /\  k  e.  x )  ->  k  e.  NN )
147140, 146, 22syl2anc 656 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  x  e.  ( ~P NN  i^i  Fin ) )  /\  k  e.  x )  ->  A  e.  ( 0 [,) +oo ) )
148 eqid 2441 . . . . . . . . . 10  |-  ( k  e.  x  |->  A )  =  ( k  e.  x  |->  A )
149147, 148fmptd 5864 . . . . . . . . 9  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  x  e.  ( ~P NN  i^i  Fin ) )  ->  (
k  e.  x  |->  A ) : x --> ( 0 [,) +oo ) )
150 esumpfinvallem 26459 . . . . . . . . 9  |-  ( ( x  e.  ( ~P NN  i^i  Fin )  /\  ( k  e.  x  |->  A ) : x --> ( 0 [,) +oo ) )  ->  (fld  gsumg  ( k  e.  x  |->  A ) )  =  ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  x  |->  A ) ) )
151139, 149, 150syl2anc 656 . . . . . . . 8  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  x  e.  ( ~P NN  i^i  Fin ) )  ->  (fld  gsumg  ( k  e.  x  |->  A ) )  =  ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  x  |->  A ) ) )
152 inss2 3568 . . . . . . . . . 10  |-  ( ~P NN  i^i  Fin )  C_ 
Fin
153152, 139sseldi 3351 . . . . . . . . 9  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  x  e.  ( ~P NN  i^i  Fin ) )  ->  x  e.  Fin )
154140, 146, 23syl2anc 656 . . . . . . . . 9  |-  ( ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  x  e.  ( ~P NN  i^i  Fin ) )  /\  k  e.  x )  ->  A  e.  CC )
155153, 154gsumfsum 17838 . . . . . . . 8  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  x  e.  ( ~P NN  i^i  Fin ) )  ->  (fld  gsumg  ( k  e.  x  |->  A ) )  = 
sum_ k  e.  x  A )
156151, 155eqtr3d 2475 . . . . . . 7  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  x  e.  ( ~P NN  i^i  Fin ) )  ->  (
( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  x  |->  A ) )  = 
sum_ k  e.  x  A )
157134, 135, 137, 138, 156esumval 26436 . . . . . 6  |-  ( (
ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo )
)  -> Σ* k  e.  NN A  =  sup ( ran  ( x  e.  ( ~P NN  i^i  Fin )  |->  sum_ k  e.  x  A ) ,  RR* ,  <  ) )
158157adantr 462 . . . . 5  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e.  dom  ~~>  )  -> Σ* k  e.  NN A  =  sup ( ran  ( x  e.  ( ~P NN  i^i  Fin )  |->  sum_ k  e.  x  A ) ,  RR* ,  <  ) )
15998, 131, 132lmdvg 26319 . . . . . . . . . . 11  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e.  dom  ~~>  )  ->  A. y  e.  RR  E. l  e.  NN  A. n  e.  ( ZZ>= `  l ) y  < 
( F `  n
) )
160159r19.21bi 2812 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e.  dom  ~~>  )  /\  y  e.  RR )  ->  E. l  e.  NN  A. n  e.  ( ZZ>= `  l ) y  < 
( F `  n
) )
161 nnz 10664 . . . . . . . . . . . . 13  |-  ( l  e.  NN  ->  l  e.  ZZ )
162 uzid 10871 . . . . . . . . . . . . 13  |-  ( l  e.  ZZ  ->  l  e.  ( ZZ>= `  l )
)
163161, 162syl 16 . . . . . . . . . . . 12  |-  ( l  e.  NN  ->  l  e.  ( ZZ>= `  l )
)
164 simpr 458 . . . . . . . . . . . . . 14  |-  ( ( l  e.  NN  /\  n  =  l )  ->  n  =  l )
165164fveq2d 5692 . . . . . . . . . . . . 13  |-  ( ( l  e.  NN  /\  n  =  l )  ->  ( F `  n
)  =  ( F `
 l ) )
166165breq2d 4301 . . . . . . . . . . . 12  |-  ( ( l  e.  NN  /\  n  =  l )  ->  ( y  <  ( F `  n )  <->  y  <  ( F `  l ) ) )
167163, 166rspcdv 3073 . . . . . . . . . . 11  |-  ( l  e.  NN  ->  ( A. n  e.  ( ZZ>=
`  l ) y  <  ( F `  n )  ->  y  <  ( F `  l
) ) )
168167reximia 2819 . . . . . . . . . 10  |-  ( E. l  e.  NN  A. n  e.  ( ZZ>= `  l ) y  < 
( F `  n
)  ->  E. l  e.  NN  y  <  ( F `  l )
)
169160, 168syl 16 . . . . . . . . 9  |-  ( ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e.  dom  ~~>  )  /\  y  e.  RR )  ->  E. l  e.  NN  y  <  ( F `  l ) )
170 simplr 749 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\ 
A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e. 
dom 
~~>  )  /\  y  e.  RR )  /\  l  e.  NN )  ->  y  e.  RR )
17198ad2antrr 720 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\ 
A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e. 
dom 
~~>  )  /\  y  e.  RR )  /\  l  e.  NN )  ->  F : NN --> ( 0 [,) +oo ) )
172 simpr 458 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\ 
A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e. 
dom 
~~>  )  /\  y  e.  RR )  /\  l  e.  NN )  ->  l  e.  NN )
173171, 172ffvelrnd 5841 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\ 
A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e. 
dom 
~~>  )  /\  y  e.  RR )  /\  l  e.  NN )  ->  ( F `  l )  e.  ( 0 [,) +oo ) )
17413, 173sseldi 3351 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\ 
A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e. 
dom 
~~>  )  /\  y  e.  RR )  /\  l  e.  NN )  ->  ( F `  l )  e.  RR )
175 ltle 9459 . . . . . . . . . . . 12  |-  ( ( y  e.  RR  /\  ( F `  l )  e.  RR )  -> 
( y  <  ( F `  l )  ->  y  <_  ( F `  l ) ) )
176170, 174, 175syl2anc 656 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\ 
A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e. 
dom 
~~>  )  /\  y  e.  RR )  /\  l  e.  NN )  ->  (
y  <  ( F `  l )  ->  y  <_  ( F `  l
) ) )
17725a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\ 
A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e. 
dom 
~~>  )  /\  y  e.  RR )  /\  l  e.  NN )  ->  F  =  ( n  e.  NN  |-> Σ* k  e.  ( 1 ... n ) A ) )
178 oveq2 6098 . . . . . . . . . . . . . . . 16  |-  ( n  =  l  ->  (
1 ... n )  =  ( 1 ... l
) )
179 esumeq1 26426 . . . . . . . . . . . . . . . 16  |-  ( ( 1 ... n )  =  ( 1 ... l )  -> Σ* k  e.  ( 1 ... n ) A  = Σ* k  e.  ( 1 ... l ) A )
180178, 179syl 16 . . . . . . . . . . . . . . 15  |-  ( n  =  l  -> Σ* k  e.  ( 1 ... n ) A  = Σ* k  e.  ( 1 ... l ) A )
181180adantl 463 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo )
)  /\  -.  F  e.  dom  ~~>  )  /\  y  e.  RR )  /\  l  e.  NN )  /\  n  =  l )  -> Σ* k  e.  ( 1 ... n
) A  = Σ* k  e.  ( 1 ... l
) A )
182 esumex 26421 . . . . . . . . . . . . . . 15  |- Σ* k  e.  ( 1 ... l ) A  e.  _V
183182a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\ 
A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e. 
dom 
~~>  )  /\  y  e.  RR )  /\  l  e.  NN )  -> Σ* k  e.  ( 1 ... l ) A  e.  _V )
184177, 181, 172, 183fvmptd 5776 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\ 
A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e. 
dom 
~~>  )  /\  y  e.  RR )  /\  l  e.  NN )  ->  ( F `  l )  = Σ* k  e.  ( 1 ... l ) A )
185 fzfid 11791 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\ 
A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e. 
dom 
~~>  )  /\  y  e.  RR )  /\  l  e.  NN )  ->  (
1 ... l )  e. 
Fin )
186 simp-4l 760 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( (
ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo )
)  /\  -.  F  e.  dom  ~~>  )  /\  y  e.  RR )  /\  l  e.  NN )  /\  k  e.  ( 1 ... l
) )  ->  ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo )
) )
187 elfznn 11474 . . . . . . . . . . . . . . . 16  |-  ( k  e.  ( 1 ... l )  ->  k  e.  NN )
188187adantl 463 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( (
ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo )
)  /\  -.  F  e.  dom  ~~>  )  /\  y  e.  RR )  /\  l  e.  NN )  /\  k  e.  ( 1 ... l
) )  ->  k  e.  NN )
189186, 188, 22syl2anc 656 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo )
)  /\  -.  F  e.  dom  ~~>  )  /\  y  e.  RR )  /\  l  e.  NN )  /\  k  e.  ( 1 ... l
) )  ->  A  e.  ( 0 [,) +oo ) )
190185, 189esumpfinval 26460 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\ 
A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e. 
dom 
~~>  )  /\  y  e.  RR )  /\  l  e.  NN )  -> Σ* k  e.  ( 1 ... l ) A  =  sum_ k  e.  ( 1 ... l
) A )
191184, 190eqtrd 2473 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\ 
A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e. 
dom 
~~>  )  /\  y  e.  RR )  /\  l  e.  NN )  ->  ( F `  l )  =  sum_ k  e.  ( 1 ... l ) A )
192191breq2d 4301 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\ 
A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e. 
dom 
~~>  )  /\  y  e.  RR )  /\  l  e.  NN )  ->  (
y  <_  ( F `  l )  <->  y  <_  sum_ k  e.  ( 1 ... l ) A ) )
193176, 192sylibd 214 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\ 
A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e. 
dom 
~~>  )  /\  y  e.  RR )  /\  l  e.  NN )  ->  (
y  <  ( F `  l )  ->  y  <_ 
sum_ k  e.  ( 1 ... l ) A ) )
194193reximdva 2826 . . . . . . . . 9  |-  ( ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e.  dom  ~~>  )  /\  y  e.  RR )  ->  ( E. l  e.  NN  y  <  ( F `  l )  ->  E. l  e.  NN  y  <_  sum_ k  e.  ( 1 ... l ) A ) )
195169, 194mpd 15 . . . . . . . 8  |-  ( ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e.  dom  ~~>  )  /\  y  e.  RR )  ->  E. l  e.  NN  y  <_  sum_ k  e.  ( 1 ... l ) A )
196 fzssuz 11495 . . . . . . . . . . . . . 14  |-  ( 1 ... l )  C_  ( ZZ>= `  1 )
197196, 1sseqtr4i 3386 . . . . . . . . . . . . 13  |-  ( 1 ... l )  C_  NN
198 ovex 6115 . . . . . . . . . . . . . 14  |-  ( 1 ... l )  e. 
_V
199198elpw 3863 . . . . . . . . . . . . 13  |-  ( ( 1 ... l )  e.  ~P NN  <->  ( 1 ... l )  C_  NN )
200197, 199mpbir 209 . . . . . . . . . . . 12  |-  ( 1 ... l )  e. 
~P NN
201 fzfi 11790 . . . . . . . . . . . 12  |-  ( 1 ... l )  e. 
Fin
202 elin 3536 . . . . . . . . . . . 12  |-  ( ( 1 ... l )  e.  ( ~P NN  i^i  Fin )  <->  ( (
1 ... l )  e. 
~P NN  /\  (
1 ... l )  e. 
Fin ) )
203200, 201, 202mpbir2an 906 . . . . . . . . . . 11  |-  ( 1 ... l )  e.  ( ~P NN  i^i  Fin )
204 sumex 13161 . . . . . . . . . . 11  |-  sum_ k  e.  ( 1 ... l
) A  e.  _V
205 eqid 2441 . . . . . . . . . . . 12  |-  ( x  e.  ( ~P NN  i^i  Fin )  |->  sum_ k  e.  x  A )  =  ( x  e.  ( ~P NN  i^i  Fin )  |->  sum_ k  e.  x  A )
206 sumeq1 13162 . . . . . . . . . . . 12  |-  ( x  =  ( 1 ... l )  ->  sum_ k  e.  x  A  =  sum_ k  e.  ( 1 ... l ) A )
207205, 206elrnmpt1s 5083 . . . . . . . . . . 11  |-  ( ( ( 1 ... l
)  e.  ( ~P NN  i^i  Fin )  /\  sum_ k  e.  ( 1 ... l ) A  e.  _V )  -> 
sum_ k  e.  ( 1 ... l ) A  e.  ran  (
x  e.  ( ~P NN  i^i  Fin )  |-> 
sum_ k  e.  x  A ) )
208203, 204, 207mp2an 667 . . . . . . . . . 10  |-  sum_ k  e.  ( 1 ... l
) A  e.  ran  ( x  e.  ( ~P NN  i^i  Fin )  |-> 
sum_ k  e.  x  A )
209 nfv 1678 . . . . . . . . . . 11  |-  F/ z  y  <_  sum_ k  e.  ( 1 ... l
) A
210 breq2 4293 . . . . . . . . . . 11  |-  ( z  =  sum_ k  e.  ( 1 ... l ) A  ->  ( y  <_  z  <->  y  <_  sum_ k  e.  ( 1 ... l
) A ) )
211209, 210rspce 3065 . . . . . . . . . 10  |-  ( (
sum_ k  e.  ( 1 ... l ) A  e.  ran  (
x  e.  ( ~P NN  i^i  Fin )  |-> 
sum_ k  e.  x  A )  /\  y  <_ 
sum_ k  e.  ( 1 ... l ) A )  ->  E. z  e.  ran  ( x  e.  ( ~P NN  i^i  Fin )  |->  sum_ k  e.  x  A ) y  <_ 
z )
212208, 211mpan 665 . . . . . . . . 9  |-  ( y  <_  sum_ k  e.  ( 1 ... l ) A  ->  E. z  e.  ran  ( x  e.  ( ~P NN  i^i  Fin )  |->  sum_ k  e.  x  A ) y  <_ 
z )
213212rexlimivw 2835 . . . . . . . 8  |-  ( E. l  e.  NN  y  <_ 
sum_ k  e.  ( 1 ... l ) A  ->  E. z  e.  ran  ( x  e.  ( ~P NN  i^i  Fin )  |->  sum_ k  e.  x  A ) y  <_ 
z )
214195, 213syl 16 . . . . . . 7  |-  ( ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e.  dom  ~~>  )  /\  y  e.  RR )  ->  E. z  e.  ran  ( x  e.  ( ~P NN  i^i  Fin )  |-> 
sum_ k  e.  x  A ) y  <_ 
z )
215214ralrimiva 2797 . . . . . 6  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e.  dom  ~~>  )  ->  A. y  e.  RR  E. z  e.  ran  (
x  e.  ( ~P NN  i^i  Fin )  |-> 
sum_ k  e.  x  A ) y  <_ 
z )
216 simpr 458 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e.  dom  ~~>  )  /\  x  e.  ( ~P NN  i^i  Fin ) )  ->  x  e.  ( ~P NN  i^i  Fin ) )
217152, 216sseldi 3351 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e.  dom  ~~>  )  /\  x  e.  ( ~P NN  i^i  Fin ) )  ->  x  e.  Fin )
218147adantllr 713 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\ 
A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e. 
dom 
~~>  )  /\  x  e.  ( ~P NN  i^i  Fin ) )  /\  k  e.  x )  ->  A  e.  ( 0 [,) +oo ) )
21913, 218sseldi 3351 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\ 
A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e. 
dom 
~~>  )  /\  x  e.  ( ~P NN  i^i  Fin ) )  /\  k  e.  x )  ->  A  e.  RR )
220217, 219fsumrecl 13207 . . . . . . . . 9  |-  ( ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e.  dom  ~~>  )  /\  x  e.  ( ~P NN  i^i  Fin ) )  ->  sum_ k  e.  x  A  e.  RR )
221220rexrd 9429 . . . . . . . 8  |-  ( ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e.  dom  ~~>  )  /\  x  e.  ( ~P NN  i^i  Fin ) )  ->  sum_ k  e.  x  A  e.  RR* )
222221, 205fmptd 5864 . . . . . . 7  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e.  dom  ~~>  )  -> 
( x  e.  ( ~P NN  i^i  Fin )  |->  sum_ k  e.  x  A ) : ( ~P NN  i^i  Fin )
--> RR* )
223 frn 5562 . . . . . . 7  |-  ( ( x  e.  ( ~P NN  i^i  Fin )  |-> 
sum_ k  e.  x  A ) : ( ~P NN  i^i  Fin )
--> RR*  ->  ran  ( x  e.  ( ~P NN  i^i  Fin )  |->  sum_ k  e.  x  A )  C_ 
RR* )
224 supxrunb1 11278 . . . . . . 7  |-  ( ran  ( x  e.  ( ~P NN  i^i  Fin )  |->  sum_ k  e.  x  A )  C_  RR*  ->  ( A. y  e.  RR  E. z  e.  ran  (
x  e.  ( ~P NN  i^i  Fin )  |-> 
sum_ k  e.  x  A ) y  <_ 
z  <->  sup ( ran  (
x  e.  ( ~P NN  i^i  Fin )  |-> 
sum_ k  e.  x  A ) ,  RR* ,  <  )  = +oo ) )
225222, 223, 2243syl 20 . . . . . 6  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e.  dom  ~~>  )  -> 
( A. y  e.  RR  E. z  e. 
ran  ( x  e.  ( ~P NN  i^i  Fin )  |->  sum_ k  e.  x  A ) y  <_ 
z  <->  sup ( ran  (
x  e.  ( ~P NN  i^i  Fin )  |-> 
sum_ k  e.  x  A ) ,  RR* ,  <  )  = +oo ) )
226215, 225mpbid 210 . . . . 5  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e.  dom  ~~>  )  ->  sup ( ran  ( x  e.  ( ~P NN  i^i  Fin )  |->  sum_ k  e.  x  A ) ,  RR* ,  <  )  = +oo )
227158, 226eqtrd 2473 . . . 4  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e.  dom  ~~>  )  -> Σ* k  e.  NN A  = +oo )
228133, 227breqtrrd 4315 . . 3  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e.  dom  ~~>  )  ->  F ( ~~> t `  J )Σ* k  e.  NN A
)
22997, 228pm2.61dan 784 . 2  |-  ( (
ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo )
)  ->  F ( ~~> t `  J )Σ* k  e.  NN A )
23025reseq1i 5102 . . . . . . . 8  |-  ( F  |`  ( ZZ>= `  k )
)  =  ( ( n  e.  NN  |-> Σ* k  e.  ( 1 ... n
) A )  |`  ( ZZ>= `  k )
)
231 eleq1 2501 . . . . . . . . . . . 12  |-  ( l  =  k  ->  (
l  e.  NN  <->  k  e.  NN ) )
232231anbi2d 698 . . . . . . . . . . 11  |-  ( l  =  k  ->  (
( ph  /\  l  e.  NN )  <->  ( ph  /\  k  e.  NN ) ) )
233 sbequ12r 1942 . . . . . . . . . . 11  |-  ( l  =  k  ->  ( [ l  /  k ] A  = +oo  <->  A  = +oo ) )
234232, 233anbi12d 705 . . . . . . . . . 10  |-  ( l  =  k  ->  (
( ( ph  /\  l  e.  NN )  /\  [ l  /  k ] A  = +oo ) 
<->  ( ( ph  /\  k  e.  NN )  /\  A  = +oo ) ) )
235 fveq2 5688 . . . . . . . . . . . 12  |-  ( l  =  k  ->  ( ZZ>=
`  l )  =  ( ZZ>= `  k )
)
236235reseq2d 5106 . . . . . . . . . . 11  |-  ( l  =  k  ->  (
( n  e.  NN  |-> Σ* k  e.  ( 1 ... n
) A )  |`  ( ZZ>= `  l )
)  =  ( ( n  e.  NN  |-> Σ* k  e.  ( 1 ... n
) A )  |`  ( ZZ>= `  k )
) )
237235xpeq1d 4859 . . . . . . . . . . 11  |-  ( l  =  k  ->  (
( ZZ>= `  l )  X.  { +oo } )  =  ( ( ZZ>= `  k )  X.  { +oo } ) )
238236, 237eqeq12d 2455 . . . . . . . . . 10  |-  ( l  =  k  ->  (
( ( n  e.  NN  |-> Σ* k  e.  ( 1 ... n ) A )  |`  ( ZZ>= `  l ) )  =  ( ( ZZ>= `  l
)  X.  { +oo } )  <->  ( ( n  e.  NN  |-> Σ* k  e.  ( 1 ... n ) A )  |`  ( ZZ>=
`  k ) )  =  ( ( ZZ>= `  k )  X.  { +oo } ) ) )
239234, 238imbi12d 320 . . . . . . . . 9  |-  ( l  =  k  ->  (
( ( ( ph  /\  l  e.  NN )  /\  [ l  / 
k ] A  = +oo )  ->  (
( n  e.  NN  |-> Σ* k  e.  ( 1 ... n
) A )  |`  ( ZZ>= `  l )
)  =  ( (
ZZ>= `  l )  X. 
{ +oo } ) )  <-> 
( ( ( ph  /\  k  e.  NN )  /\  A  = +oo )  ->  ( ( n  e.  NN  |-> Σ* k  e.  ( 1 ... n ) A )  |`  ( ZZ>=
`  k ) )  =  ( ( ZZ>= `  k )  X.  { +oo } ) ) ) )
240 nfv 1678 . . . . . . . . . . . . . 14  |-  F/ k ( ph  /\  l  e.  NN )
241 nfs1v 2147 . . . . . . . . . . . . . 14  |-  F/ k [ l  /  k ] A  = +oo
242240, 241nfan 1865 . . . . . . . . . . . . 13  |-  F/ k ( ( ph  /\  l  e.  NN )  /\  [ l  /  k ] A  = +oo )
243 nfv 1678 . . . . . . . . . . . . 13  |-  F/ k  n  e.  ( ZZ>= `  l )
244242, 243nfan 1865 . . . . . . . . . . . 12  |-  F/ k ( ( ( ph  /\  l  e.  NN )  /\  [ l  / 
k ] A  = +oo )  /\  n  e.  ( ZZ>= `  l )
)
24557a1i 11 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  l  e.  NN )  /\  [ l  /  k ] A  = +oo )  /\  n  e.  (
ZZ>= `  l ) )  ->  ( 1 ... n )  e.  _V )
246 simp-4l 760 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  l  e.  NN )  /\  [ l  / 
k ] A  = +oo )  /\  n  e.  ( ZZ>= `  l )
)  /\  k  e.  ( 1 ... n
) )  ->  ph )
24727adantl 463 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  l  e.  NN )  /\  [ l  / 
k ] A  = +oo )  /\  n  e.  ( ZZ>= `  l )
)  /\  k  e.  ( 1 ... n
) )  ->  k  e.  NN )
248246, 247, 50syl2anc 656 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  l  e.  NN )  /\  [ l  / 
k ] A  = +oo )  /\  n  e.  ( ZZ>= `  l )
)  /\  k  e.  ( 1 ... n
) )  ->  A  e.  ( 0 [,] +oo ) )
249 simpllr 753 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  l  e.  NN )  /\  [ l  /  k ] A  = +oo )  /\  n  e.  (
ZZ>= `  l ) )  ->  l  e.  NN )
250 elnnuz 10893 . . . . . . . . . . . . . . 15  |-  ( l  e.  NN  <->  l  e.  ( ZZ>= `  1 )
)
251 eluzfz 11444 . . . . . . . . . . . . . . 15  |-  ( ( l  e.  ( ZZ>= ` 
1 )  /\  n  e.  ( ZZ>= `  l )
)  ->  l  e.  ( 1 ... n
) )
252250, 251sylanb 469 . . . . . . . . . . . . . 14  |-  ( ( l  e.  NN  /\  n  e.  ( ZZ>= `  l ) )  -> 
l  e.  ( 1 ... n ) )
253249, 252sylancom 662 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  l  e.  NN )  /\  [ l  /  k ] A  = +oo )  /\  n  e.  (
ZZ>= `  l ) )  ->  l  e.  ( 1 ... n ) )
254 simplr 749 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  l  e.  NN )  /\  [ l  /  k ] A  = +oo )  /\  n  e.  (
ZZ>= `  l ) )  ->  [ l  / 
k ] A  = +oo )
255 sbequ12 1941 . . . . . . . . . . . . . 14  |-  ( k  =  l  ->  ( A  = +oo  <->  [ l  /  k ] A  = +oo ) )
256241, 255rspce 3065 . . . . . . . . . . . . 13  |-  ( ( l  e.  ( 1 ... n )  /\  [ l  /  k ] A  = +oo )  ->  E. k  e.  ( 1 ... n ) A  = +oo )
257253, 254, 256syl2anc 656 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  l  e.  NN )  /\  [ l  /  k ] A  = +oo )  /\  n  e.  (
ZZ>= `  l ) )  ->  E. k  e.  ( 1 ... n ) A  = +oo )
258244, 245, 248, 257esumpinfval 26458 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  l  e.  NN )  /\  [ l  /  k ] A  = +oo )  /\  n  e.  (
ZZ>= `  l ) )  -> Σ* k  e.  ( 1 ... n ) A  = +oo )
259258ralrimiva 2797 . . . . . . . . . 10  |-  ( ( ( ph  /\  l  e.  NN )  /\  [
l  /  k ] A  = +oo )  ->  A. n  e.  (
ZZ>= `  l )Σ* k  e.  ( 1 ... n
) A  = +oo )
260 eqidd 2442 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  l  e.  NN )  /\  [
l  /  k ] A  = +oo )  ->  ( ZZ>= `  l )  =  ( ZZ>= `  l
) )
261 mpteq12 4368 . . . . . . . . . . . 12  |-  ( ( ( ZZ>= `  l )  =  ( ZZ>= `  l
)  /\  A. n  e.  ( ZZ>= `  l )Σ* k  e.  ( 1 ... n
) A  = +oo )  ->  ( n  e.  ( ZZ>= `  l )  |-> Σ* k  e.  ( 1 ... n ) A )  =  ( n  e.  ( ZZ>= `  l )  |-> +oo ) )
262260, 261sylan 468 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  l  e.  NN )  /\  [ l  /  k ] A  = +oo )  /\  A. n  e.  ( ZZ>= `  l )Σ* k  e.  ( 1 ... n
) A  = +oo )  ->  ( n  e.  ( ZZ>= `  l )  |-> Σ* k  e.  ( 1 ... n ) A )  =  ( n  e.  ( ZZ>= `  l )  |-> +oo ) )
263 simplr 749 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  l  e.  NN )  /\  [
l  /  k ] A  = +oo )  ->  l  e.  NN )
264 uznnssnn 10898 . . . . . . . . . . . . 13  |-  ( l  e.  NN  ->  ( ZZ>=
`  l )  C_  NN )
265 resmpt 5153 . . . . . . . . . . . . 13  |-  ( (
ZZ>= `  l )  C_  NN  ->  ( ( n  e.  NN  |-> Σ* k  e.  ( 1 ... n ) A )  |`  ( ZZ>=
`  l ) )  =  ( n  e.  ( ZZ>= `  l )  |-> Σ* k  e.  ( 1 ... n ) A ) )
266263, 264, 2653syl 20 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  l  e.  NN )  /\  [
l  /  k ] A  = +oo )  ->  ( ( n  e.  NN  |-> Σ* k  e.  ( 1 ... n ) A )  |`  ( ZZ>= `  l ) )  =  ( n  e.  (
ZZ>= `  l )  |-> Σ* k  e.  ( 1 ... n
) A ) )
267266adantr 462 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  l  e.  NN )  /\  [ l  /  k ] A  = +oo )  /\  A. n  e.  ( ZZ>= `  l )Σ* k  e.  ( 1 ... n
) A  = +oo )  ->  ( ( n  e.  NN  |-> Σ* k  e.  ( 1 ... n ) A )  |`  ( ZZ>=
`  l ) )  =  ( n  e.  ( ZZ>= `  l )  |-> Σ* k  e.  ( 1 ... n ) A ) )
268 fconstmpt 4878 . . . . . . . . . . . 12  |-  ( (
ZZ>= `  l )  X. 
{ +oo } )  =  ( n  e.  (
ZZ>= `  l )  |-> +oo )
269268a1i 11 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  l  e.  NN )  /\  [ l  /  k ] A  = +oo )  /\  A. n  e.  ( ZZ>= `  l )Σ* k  e.  ( 1 ... n
) A  = +oo )  ->  ( ( ZZ>= `  l )  X.  { +oo } )  =  ( n  e.  ( ZZ>= `  l )  |-> +oo )
)
270262, 267, 2693eqtr4d 2483 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  l  e.  NN )  /\  [ l  /  k ] A  = +oo )  /\  A. n  e.  ( ZZ>= `  l )Σ* k  e.  ( 1 ... n
) A  = +oo )  ->  ( ( n  e.  NN  |-> Σ* k  e.  ( 1 ... n ) A )  |`  ( ZZ>=
`  l ) )  =  ( ( ZZ>= `  l )  X.  { +oo } ) )
271259, 270mpdan 663 . . . . . . . . 9  |-  ( ( ( ph  /\  l  e.  NN )  /\  [
l  /  k ] A  = +oo )  ->  ( ( n  e.  NN  |-> Σ* k  e.  ( 1 ... n ) A )  |`  ( ZZ>= `  l ) )  =  ( ( ZZ>= `  l
)  X.  { +oo } ) )
272239, 271chvarv 1963 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN )  /\  A  = +oo )  ->  (
( n  e.  NN  |-> Σ* k  e.  ( 1 ... n
) A )  |`  ( ZZ>= `  k )
)  =  ( (
ZZ>= `  k )  X. 
{ +oo } ) )
273230, 272syl5eq 2485 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  NN )  /\  A  = +oo )  ->  ( F  |`  ( ZZ>= `  k
) )  =  ( ( ZZ>= `  k )  X.  { +oo } ) )
274273ex 434 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( A  = +oo  ->  ( F  |`  ( ZZ>= `  k
) )  =  ( ( ZZ>= `  k )  X.  { +oo } ) ) )
275274reximdva 2826 . . . . 5  |-  ( ph  ->  ( E. k  e.  NN  A  = +oo  ->  E. k  e.  NN  ( F  |`  ( ZZ>= `  k ) )  =  ( ( ZZ>= `  k
)  X.  { +oo } ) ) )
276275imp 429 . . . 4  |-  ( (
ph  /\  E. k  e.  NN  A  = +oo )  ->  E. k  e.  NN  ( F  |`  ( ZZ>= `  k ) )  =  ( ( ZZ>= `  k
)  X.  { +oo } ) )
277 xrge0topn 26309 . . . . . . . . . . . . 13  |-  ( TopOpen `  ( RR*ss  ( 0 [,] +oo ) ) )  =  ( (ordTop `  <_  )t  ( 0 [,] +oo )
)
27838, 277eqtri 2461 . . . . . . . . . . . 12  |-  J  =  ( (ordTop `  <_  )t  ( 0 [,] +oo )
)
279 letopon 18768 . . . . . . . . . . . . 13  |-  (ordTop `  <_  )  e.  (TopOn `  RR* )
280 iccssxr 11374 . . . . . . . . . . . . 13  |-  ( 0 [,] +oo )  C_  RR*
281 resttopon 18724 . . . . . . . . . . . . 13  |-  ( ( (ordTop `  <_  )  e.  (TopOn `  RR* )  /\  ( 0 [,] +oo )  C_  RR* )  ->  (
(ordTop `  <_  )t  ( 0 [,] +oo ) )  e.  (TopOn `  (
0 [,] +oo )
) )
282279, 280, 281mp2an 667 . . . . . . . . . . . 12  |-  ( (ordTop `  <_  )t  ( 0 [,] +oo ) )  e.  (TopOn `  ( 0 [,] +oo ) )
283278, 282eqeltri 2511 . . . . . . . . . . 11  |-  J  e.  (TopOn `  ( 0 [,] +oo ) )
284283a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  J  e.  (TopOn `  ( 0 [,] +oo ) ) )
285 0xr 9426 . . . . . . . . . . . 12  |-  0  e.  RR*
286 0lepnf 11107 . . . . . . . . . . . 12  |-  0  <_ +oo
287 ubicc2 11398 . . . . . . . . . . . 12  |-  ( ( 0  e.  RR*  /\ +oo  e.  RR*  /\  0  <_ +oo )  -> +oo  e.  ( 0 [,] +oo ) )
288285, 6, 286, 287mp3an 1309 . . . . . . . . . . 11  |- +oo  e.  ( 0 [,] +oo )
289288a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  -> +oo  e.  ( 0 [,] +oo ) )
29049nnzd 10742 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  k  e.  ZZ )
291 eqid 2441 . . . . . . . . . . 11  |-  ( ZZ>= `  k )  =  (
ZZ>= `  k )
292291lmconst 18824 . . . . . . . . . 10  |-  ( ( J  e.  (TopOn `  ( 0 [,] +oo ) )  /\ +oo  e.  ( 0 [,] +oo )  /\  k  e.  ZZ )  ->  ( ( ZZ>= `  k )  X.  { +oo } ) ( ~~> t `  J ) +oo )
293284, 289, 290, 292syl3anc 1213 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( (
ZZ>= `  k )  X. 
{ +oo } ) ( ~~> t `  J ) +oo )
294 breq1 4292 . . . . . . . . . 10  |-  ( ( F  |`  ( ZZ>= `  k ) )  =  ( ( ZZ>= `  k
)  X.  { +oo } )  ->  ( ( F  |`  ( ZZ>= `  k
) ) ( ~~> t `  J ) +oo  <->  ( ( ZZ>=
`  k )  X. 
{ +oo } ) ( ~~> t `  J ) +oo ) )
295294biimprd 223 . . . . . . . . 9  |-  ( ( F  |`  ( ZZ>= `  k ) )  =  ( ( ZZ>= `  k
)  X.  { +oo } )  ->  ( (
( ZZ>= `  k )  X.  { +oo } ) ( ~~> t `  J
) +oo  ->  ( F  |`  ( ZZ>= `  k )
) ( ~~> t `  J ) +oo )
)
296293, 295mpan9 466 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F  |`  ( ZZ>= `  k
) )  =  ( ( ZZ>= `  k )  X.  { +oo } ) )  ->  ( F  |`  ( ZZ>= `  k )
) ( ~~> t `  J ) +oo )
297284elfvexd 5715 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  ( 0 [,] +oo )  e. 
_V )
298 cnex 9359 . . . . . . . . . . . 12  |-  CC  e.  _V
299298a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  CC  e.  _V )
30065adantr 462 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  F : NN
--> ( 0 [,] +oo ) )
301 nnsscn 10323 . . . . . . . . . . . 12  |-  NN  C_  CC
302301a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  NN  C_  CC )
303 elpm2r 7226 . . . . . . . . . . 11  |-  ( ( ( ( 0 [,] +oo )  e.  _V  /\  CC  e.  _V )  /\  ( F : NN --> ( 0 [,] +oo )  /\  NN  C_  CC ) )  ->  F  e.  ( ( 0 [,] +oo )  ^pm  CC ) )
304297, 299, 300, 302, 303syl22anc 1214 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  F  e.  ( ( 0 [,] +oo )  ^pm  CC ) )
305284, 304, 290lmres 18863 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( F ( ~~> t `  J
) +oo  <->  ( F  |`  ( ZZ>= `  k )
) ( ~~> t `  J ) +oo )
)
306305biimpar 482 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F  |`  ( ZZ>= `  k
) ) ( ~~> t `  J ) +oo )  ->  F ( ~~> t `  J ) +oo )
307296, 306syldan 467 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F  |`  ( ZZ>= `  k
) )  =  ( ( ZZ>= `  k )  X.  { +oo } ) )  ->  F ( ~~> t `  J ) +oo )
308307ex 434 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( F  |`  ( ZZ>= `  k ) )  =  ( ( ZZ>= `  k
)  X.  { +oo } )  ->  F ( ~~> t `  J ) +oo ) )
309308rexlimdva 2839 . . . . 5  |-  ( ph  ->  ( E. k  e.  NN  ( F  |`  ( ZZ>= `  k )
)  =  ( (
ZZ>= `  k )  X. 
{ +oo } )  ->  F ( ~~> t `  J ) +oo )
)
310309imp 429 . . . 4  |-  ( (
ph  /\  E. k  e.  NN  ( F  |`  ( ZZ>= `  k )
)  =  ( (
ZZ>= `  k )  X. 
{ +oo } ) )  ->  F ( ~~> t `  J ) +oo )
311276, 310syldan 467 . . 3  |-  ( (
ph  /\  E. k  e.  NN  A  = +oo )  ->  F ( ~~> t `  J ) +oo )
312 nfv 1678 . . . . 5  |-  F/ k
ph
313 nfre1 2770 . . . . 5  |-  F/ k E. k  e.  NN  A  = +oo
314312, 313nfan 1865 . . . 4  |-  F/ k ( ph  /\  E. k  e.  NN  A  = +oo )
315136a1i 11 . . . 4  |-  ( (
ph  /\  E. k  e.  NN  A  = +oo )  ->  NN  e.  _V )
31650adantlr 709 . . . 4  |-  ( ( ( ph  /\  E. k  e.  NN  A  = +oo )  /\  k  e.  NN )  ->  A  e.  ( 0 [,] +oo ) )
317 simpr 458 . . . 4  |-  ( (
ph  /\  E. k  e.  NN  A  = +oo )  ->  E. k  e.  NN  A  = +oo )
318314, 315, 316, 317esumpinfval 26458 . . 3  |-  ( (
ph  /\  E. k  e.  NN  A  = +oo )  -> Σ* k  e.  NN A  = +oo )
319311, 318breqtrrd 4315 . 2  |-  ( (
ph  /\  E. k  e.  NN  A  = +oo )  ->  F ( ~~> t `  J )Σ* k  e.  NN A
)
320 eleq1 2501 . . . . . . . . 9  |-  ( k  =  m  ->  (
k  e.  NN  <->  m  e.  NN ) )
321320anbi2d 698 . . . . . . . 8  |-  ( k  =  m  ->  (
( ph  /\  k  e.  NN )  <->  ( ph  /\  m  e.  NN ) ) )
32216eleq1d 2507 . . . . . . . 8  |-  ( k  =  m  ->  ( A  e.  ( 0 [,] +oo )  <->  B  e.  ( 0 [,] +oo ) ) )
323321, 322imbi12d 320 . . . . . . 7  |-  ( k  =  m  ->  (
( ( ph  /\  k  e.  NN )  ->  A  e.  ( 0 [,] +oo ) )  <-> 
( ( ph  /\  m  e.  NN )  ->  B  e.  ( 0 [,] +oo ) ) ) )
324323, 50chvarv 1963 . . . . . 6  |-  ( (
ph  /\  m  e.  NN )  ->  B  e.  ( 0 [,] +oo ) )
325 eliccelico 26000 . . . . . . 7  |-  ( ( 0  e.  RR*  /\ +oo  e.  RR*  /\  0  <_ +oo )  ->  ( B  e.  ( 0 [,] +oo )  <->  ( B  e.  ( 0 [,) +oo )  \/  B  = +oo ) ) )
326285, 6, 286, 325mp3an 1309 . . . . . 6  |-  ( B  e.  ( 0 [,] +oo )  <->  ( B  e.  ( 0 [,) +oo )  \/  B  = +oo ) )
327324, 326sylib 196 . . . . 5  |-  ( (
ph  /\  m  e.  NN )  ->  ( B  e.  ( 0 [,) +oo )  \/  B  = +oo ) )
328327ralrimiva 2797 . . . 4  |-  ( ph  ->  A. m  e.  NN  ( B  e.  (
0 [,) +oo )  \/  B  = +oo ) )
329 r19.30 2863 . . . 4  |-  ( A. m  e.  NN  ( B  e.  ( 0 [,) +oo )  \/  B  = +oo )  ->  ( A. m  e.  NN  B  e.  ( 0 [,) +oo )  \/  E. m  e.  NN  B  = +oo )
)
330328, 329syl 16 . . 3  |-  ( ph  ->  ( A. m  e.  NN  B  e.  ( 0 [,) +oo )  \/  E. m  e.  NN  B  = +oo )
)
33116eqeq1d 2449 . . . . 5  |-  ( k  =  m  ->  ( A  = +oo  <->  B  = +oo ) )
332331cbvrexv 2946 . . . 4  |-  ( E. k  e.  NN  A  = +oo  <->  E. m  e.  NN  B  = +oo )
333332orbi2i 516 . . 3  |-  ( ( A. m  e.  NN  B  e.  ( 0 [,) +oo )  \/ 
E. k  e.  NN  A  = +oo )  <->  ( A. m  e.  NN  B  e.  ( 0 [,) +oo )  \/ 
E. m  e.  NN  B  = +oo )
)
334330, 333sylibr 212 . 2  |-  ( ph  ->  ( A. m  e.  NN  B  e.  ( 0 [,) +oo )  \/  E. k  e.  NN  A  = +oo )
)
335229, 319, 334mpjaodan 779 1  |-  ( ph  ->  F ( ~~> t `  J )Σ* k  e.  NN A
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 960    = wceq 1364   [wsb 1705    e. wcel 1761   A.wral 2713   E.wrex 2714   _Vcvv 2970    i^i cin 3324    C_ wss 3325   ~Pcpw 3857   {csn 3874   class class class wbr 4289    e. cmpt 4347    X. cxp 4834   dom cdm 4836   ran crn 4837    |` cres 4838    Fn wfn 5410   -->wf 5411   ` cfv 5415  (class class class)co 6090    ^pm cpm 7211   Fincfn 7306   supcsup 7686   CCcc 9276   RRcr 9277   0cc0 9278   1c1 9279    + caddc 9281   +oocpnf 9411   -oocmnf 9412   RR*cxr 9413    < clt 9414    <_ cle 9415   NNcn 10318   ZZcz 10642   ZZ>=cuz 10857   (,)cioo 11296   [,)cico 11298   [,]cicc 11299   ...cfz 11433    seqcseq 11802    ~~> cli 12958   sum_csu 13159   ↾s cress 14171   ↾t crest 14355   TopOpenctopn 14356    gsumg cgsu 14375  ordTopcordt 14433   RR*scxrs 14434  ℂfldccnfld 17777  TopOnctopon 18458   ~~> tclm 18789  Σ*cesum 26419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-inf2 7843  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355  ax-pre-sup 9356  ax-addf 9357  ax-mulf 9358
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-fal 1370  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-iin 4171  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-se 4676  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-isom 5424  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-of 6319  df-om 6476  df-1st 6576  df-2nd 6577  df-supp 6690  df-recs 6828  df-rdg 6862  df-1o 6916  df-2o 6917  df-oadd 6920  df-er 7097  df-map 7212  df-pm 7213  df-ixp 7260  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-fsupp 7617  df-fi 7657  df-sup 7687  df-oi 7720  df-card 8105  df-cda 8333  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-div 9990  df-nn 10319  df-2 10376  df-3 10377  df-4 10378  df-5 10379  df-6 10380  df-7 10381  df-8 10382  df-9 10383  df-10 10384  df-n0 10576  df-z 10643  df-dec 10752  df-uz 10858  df-q 10950  df-rp 10988  df-xneg 11085  df-xadd 11086  df-xmul 11087  df-ioo 11300  df-ioc 11301  df-ico 11302  df-icc 11303  df-fz 11434  df-fzo 11545  df-fl 11638  df-mod 11705  df-seq 11803  df-exp 11862  df-fac 12048  df-bc 12075  df-hash 12100  df-shft 12552  df-cj 12584  df-re 12585  df-im 12586  df-sqr 12720  df-abs 12721  df-limsup 12945  df-clim 12962  df-rlim 12963  df-sum 13160  df-ef 13349  df-sin 13351  df-cos 13352  df-pi 13354  df-struct 14172  df-ndx 14173  df-slot 14174  df-base 14175  df-sets 14176  df-ress 14177  df-plusg 14247  df-mulr 14248  df-starv 14249  df-sca 14250  df-vsca 14251  df-ip 14252  df-tset 14253  df-ple 14254  df-ds 14256  df-unif 14257  df-hom 14258  df-cco 14259  df-rest 14357  df-topn 14358  df-0g 14376  df-gsum 14377  df-topgen 14378  df-pt 14379  df-prds 14382  df-ordt 14435  df-xrs 14436  df-qtop 14441  df-imas 14442  df-xps 14444  df-mre 14520  df-mrc 14521  df-acs 14523  df-ps 15366  df-tsr 15367  df-mnd 15411  df-plusf 15412  df-mhm 15460  df-submnd 15461  df-grp 15538  df-minusg 15539  df-sbg 15540  df-mulg 15541  df-subg 15671  df-cntz 15828  df-cmn 16272  df-abl 16273  df-mgp 16582  df-ur 16594  df-rng 16637  df-cring 16638  df-subrg 16843  df-abv 16882  df-lmod 16930  df-scaf 16931  df-sra 17231  df-rgmod 17232  df-psmet 17768  df-xmet 17769  df-met 17770  df-bl 17771  df-mopn 17772  df-fbas 17773  df-fg 17774  df-cnfld 17778  df-top 18462  df-bases 18464  df-topon 18465  df-topsp 18466  df-cld 18582  df-ntr 18583  df-cls 18584  df-nei 18661  df-lp 18699  df-perf 18700  df-cn 18790  df-cnp 18791  df-lm 18792  df-haus 18878  df-tx 19094  df-hmeo 19287  df-fil 19378  df-fm 19470  df-flim 19471  df-flf 19472  df-tmd 19602  df-tgp 19603  df-tsms 19656  df-trg 19693  df-xms 19854  df-ms 19855  df-tms 19856  df-nm 20134  df-ngp 20135  df-nrg 20137  df-nlm 20138  df-ii 20412  df-cncf 20413  df-limc 21300  df-dv 21301  df-log 21967  df-esum 26420
This theorem is referenced by:  esumcvg2  26472
  Copyright terms: Public domain W3C validator