Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumcst Structured version   Visualization version   Unicode version

Theorem esumcst 28958
Description: The extended sum of a constant. (Contributed by Thierry Arnoux, 3-Mar-2017.) (Revised by Thierry Arnoux, 5-Jul-2017.)
Hypotheses
Ref Expression
esumcst.1  |-  F/_ k A
esumcst.2  |-  F/_ k B
Assertion
Ref Expression
esumcst  |-  ( ( A  e.  V  /\  B  e.  ( 0 [,] +oo ) )  -> Σ* k  e.  A B  =  ( ( # `  A ) xe B ) )
Distinct variable group:    k, V
Allowed substitution hints:    A( k)    B( k)

Proof of Theorem esumcst
Dummy variables  a 
l  n  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 esumcst.1 . . . . 5  |-  F/_ k A
21nfel1 2626 . . . 4  |-  F/ k  A  e.  V
3 esumcst.2 . . . . 5  |-  F/_ k B
43nfel1 2626 . . . 4  |-  F/ k  B  e.  ( 0 [,] +oo )
52, 4nfan 2031 . . 3  |-  F/ k ( A  e.  V  /\  B  e.  (
0 [,] +oo )
)
6 simpl 464 . . 3  |-  ( ( A  e.  V  /\  B  e.  ( 0 [,] +oo ) )  ->  A  e.  V
)
7 simplr 770 . . 3  |-  ( ( ( A  e.  V  /\  B  e.  (
0 [,] +oo )
)  /\  k  e.  A )  ->  B  e.  ( 0 [,] +oo ) )
8 xrge0tmd 28826 . . . . . . 7  |-  ( RR*ss  ( 0 [,] +oo ) )  e. TopMnd
9 tmdmnd 21168 . . . . . . 7  |-  ( (
RR*ss  ( 0 [,] +oo ) )  e. TopMnd  ->  (
RR*ss  ( 0 [,] +oo ) )  e.  Mnd )
108, 9ax-mp 5 . . . . . 6  |-  ( RR*ss  ( 0 [,] +oo ) )  e.  Mnd
1110a1i 11 . . . . 5  |-  ( ( ( A  e.  V  /\  B  e.  (
0 [,] +oo )
)  /\  x  e.  ( ~P A  i^i  Fin ) )  ->  ( RR*ss  ( 0 [,] +oo ) )  e.  Mnd )
12 inss2 3644 . . . . . 6  |-  ( ~P A  i^i  Fin )  C_ 
Fin
13 simpr 468 . . . . . 6  |-  ( ( ( A  e.  V  /\  B  e.  (
0 [,] +oo )
)  /\  x  e.  ( ~P A  i^i  Fin ) )  ->  x  e.  ( ~P A  i^i  Fin ) )
1412, 13sseldi 3416 . . . . 5  |-  ( ( ( A  e.  V  /\  B  e.  (
0 [,] +oo )
)  /\  x  e.  ( ~P A  i^i  Fin ) )  ->  x  e.  Fin )
15 simplr 770 . . . . 5  |-  ( ( ( A  e.  V  /\  B  e.  (
0 [,] +oo )
)  /\  x  e.  ( ~P A  i^i  Fin ) )  ->  B  e.  ( 0 [,] +oo ) )
16 xrge0base 28522 . . . . . 6  |-  ( 0 [,] +oo )  =  ( Base `  ( RR*ss  ( 0 [,] +oo ) ) )
17 eqid 2471 . . . . . 6  |-  (.g `  ( RR*ss  ( 0 [,] +oo ) ) )  =  (.g `  ( RR*ss  (
0 [,] +oo )
) )
183, 16, 17gsumconstf 17646 . . . . 5  |-  ( ( ( RR*ss  ( 0 [,] +oo ) )  e.  Mnd  /\  x  e.  Fin  /\  B  e.  ( 0 [,] +oo ) )  ->  (
( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  x  |->  B ) )  =  ( ( # `  x
) (.g `  ( RR*ss  (
0 [,] +oo )
) ) B ) )
1911, 14, 15, 18syl3anc 1292 . . . 4  |-  ( ( ( A  e.  V  /\  B  e.  (
0 [,] +oo )
)  /\  x  e.  ( ~P A  i^i  Fin ) )  ->  (
( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  x  |->  B ) )  =  ( ( # `  x
) (.g `  ( RR*ss  (
0 [,] +oo )
) ) B ) )
20 hashcl 12576 . . . . . 6  |-  ( x  e.  Fin  ->  ( # `
 x )  e. 
NN0 )
2114, 20syl 17 . . . . 5  |-  ( ( ( A  e.  V  /\  B  e.  (
0 [,] +oo )
)  /\  x  e.  ( ~P A  i^i  Fin ) )  ->  ( # `
 x )  e. 
NN0 )
22 xrge0mulgnn0 28526 . . . . 5  |-  ( ( ( # `  x
)  e.  NN0  /\  B  e.  ( 0 [,] +oo ) )  ->  ( ( # `  x ) (.g `  ( RR*ss  ( 0 [,] +oo ) ) ) B )  =  ( (
# `  x ) xe B ) )
2321, 15, 22syl2anc 673 . . . 4  |-  ( ( ( A  e.  V  /\  B  e.  (
0 [,] +oo )
)  /\  x  e.  ( ~P A  i^i  Fin ) )  ->  (
( # `  x ) (.g `  ( RR*ss  (
0 [,] +oo )
) ) B )  =  ( ( # `  x ) xe B ) )
2419, 23eqtrd 2505 . . 3  |-  ( ( ( A  e.  V  /\  B  e.  (
0 [,] +oo )
)  /\  x  e.  ( ~P A  i^i  Fin ) )  ->  (
( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  x  |->  B ) )  =  ( ( # `  x
) xe B ) )
255, 1, 6, 7, 24esumval 28941 . 2  |-  ( ( A  e.  V  /\  B  e.  ( 0 [,] +oo ) )  -> Σ* k  e.  A B  =  sup ( ran  ( x  e.  ( ~P A  i^i  Fin )  |->  ( ( # `  x ) xe B ) ) , 
RR* ,  <  ) )
26 nn0ssre 10897 . . . . . . . . . 10  |-  NN0  C_  RR
27 ressxr 9702 . . . . . . . . . 10  |-  RR  C_  RR*
2826, 27sstri 3427 . . . . . . . . 9  |-  NN0  C_  RR*
29 pnfxr 11435 . . . . . . . . . 10  |- +oo  e.  RR*
30 snssi 4107 . . . . . . . . . 10  |-  ( +oo  e.  RR*  ->  { +oo }  C_ 
RR* )
3129, 30ax-mp 5 . . . . . . . . 9  |-  { +oo } 
C_  RR*
3228, 31unssi 3600 . . . . . . . 8  |-  ( NN0 
u.  { +oo } ) 
C_  RR*
33 hashf 12560 . . . . . . . . 9  |-  # : _V
--> ( NN0  u.  { +oo } )
34 vex 3034 . . . . . . . . 9  |-  x  e. 
_V
35 ffvelrn 6035 . . . . . . . . 9  |-  ( (
# : _V --> ( NN0 
u.  { +oo } )  /\  x  e.  _V )  ->  ( # `  x
)  e.  ( NN0 
u.  { +oo } ) )
3633, 34, 35mp2an 686 . . . . . . . 8  |-  ( # `  x )  e.  ( NN0  u.  { +oo } )
3732, 36sselii 3415 . . . . . . 7  |-  ( # `  x )  e.  RR*
3837a1i 11 . . . . . 6  |-  ( ( ( A  e.  V  /\  B  e.  (
0 [,] +oo )
)  /\  x  e.  ( ~P A  i^i  Fin ) )  ->  ( # `
 x )  e. 
RR* )
39 iccssxr 11742 . . . . . . . 8  |-  ( 0 [,] +oo )  C_  RR*
40 simpr 468 . . . . . . . 8  |-  ( ( A  e.  V  /\  B  e.  ( 0 [,] +oo ) )  ->  B  e.  ( 0 [,] +oo )
)
4139, 40sseldi 3416 . . . . . . 7  |-  ( ( A  e.  V  /\  B  e.  ( 0 [,] +oo ) )  ->  B  e.  RR* )
4241adantr 472 . . . . . 6  |-  ( ( ( A  e.  V  /\  B  e.  (
0 [,] +oo )
)  /\  x  e.  ( ~P A  i^i  Fin ) )  ->  B  e.  RR* )
4338, 42xmulcld 11613 . . . . 5  |-  ( ( ( A  e.  V  /\  B  e.  (
0 [,] +oo )
)  /\  x  e.  ( ~P A  i^i  Fin ) )  ->  (
( # `  x ) xe B )  e.  RR* )
44 eqid 2471 . . . . 5  |-  ( x  e.  ( ~P A  i^i  Fin )  |->  ( (
# `  x ) xe B ) )  =  ( x  e.  ( ~P A  i^i  Fin )  |->  ( (
# `  x ) xe B ) )
4543, 44fmptd 6061 . . . 4  |-  ( ( A  e.  V  /\  B  e.  ( 0 [,] +oo ) )  ->  ( x  e.  ( ~P A  i^i  Fin )  |->  ( ( # `  x ) xe B ) ) : ( ~P A  i^i  Fin ) --> RR* )
46 frn 5747 . . . 4  |-  ( ( x  e.  ( ~P A  i^i  Fin )  |->  ( ( # `  x
) xe B ) ) : ( ~P A  i^i  Fin )
--> RR*  ->  ran  ( x  e.  ( ~P A  i^i  Fin )  |->  ( (
# `  x ) xe B ) )  C_  RR* )
4745, 46syl 17 . . 3  |-  ( ( A  e.  V  /\  B  e.  ( 0 [,] +oo ) )  ->  ran  ( x  e.  ( ~P A  i^i  Fin )  |->  ( ( # `  x ) xe B ) )  C_  RR* )
48 hashxrcl 12577 . . . . 5  |-  ( A  e.  V  ->  ( # `
 A )  e. 
RR* )
4948adantr 472 . . . 4  |-  ( ( A  e.  V  /\  B  e.  ( 0 [,] +oo ) )  ->  ( # `  A
)  e.  RR* )
5049, 41xmulcld 11613 . . 3  |-  ( ( A  e.  V  /\  B  e.  ( 0 [,] +oo ) )  ->  ( ( # `  A ) xe B )  e.  RR* )
51 vex 3034 . . . . . . . 8  |-  y  e. 
_V
5244elrnmpt 5087 . . . . . . . 8  |-  ( y  e.  _V  ->  (
y  e.  ran  (
x  e.  ( ~P A  i^i  Fin )  |->  ( ( # `  x
) xe B ) )  <->  E. x  e.  ( ~P A  i^i  Fin ) y  =  ( ( # `  x
) xe B ) ) )
5351, 52ax-mp 5 . . . . . . 7  |-  ( y  e.  ran  ( x  e.  ( ~P A  i^i  Fin )  |->  ( (
# `  x ) xe B ) )  <->  E. x  e.  ( ~P A  i^i  Fin ) y  =  ( ( # `  x
) xe B ) )
5453biimpi 199 . . . . . 6  |-  ( y  e.  ran  ( x  e.  ( ~P A  i^i  Fin )  |->  ( (
# `  x ) xe B ) )  ->  E. x  e.  ( ~P A  i^i  Fin ) y  =  ( ( # `  x
) xe B ) )
5549adantr 472 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  B  e.  (
0 [,] +oo )
)  /\  x  e.  ( ~P A  i^i  Fin ) )  ->  ( # `
 A )  e. 
RR* )
56 0xr 9705 . . . . . . . . . . 11  |-  0  e.  RR*
5756a1i 11 . . . . . . . . . 10  |-  ( ( ( A  e.  V  /\  B  e.  (
0 [,] +oo )
)  /\  x  e.  ( ~P A  i^i  Fin ) )  ->  0  e.  RR* )
5829a1i 11 . . . . . . . . . 10  |-  ( ( ( A  e.  V  /\  B  e.  (
0 [,] +oo )
)  /\  x  e.  ( ~P A  i^i  Fin ) )  -> +oo  e.  RR* )
59 iccgelb 11716 . . . . . . . . . 10  |-  ( ( 0  e.  RR*  /\ +oo  e.  RR*  /\  B  e.  ( 0 [,] +oo ) )  ->  0  <_  B )
6057, 58, 15, 59syl3anc 1292 . . . . . . . . 9  |-  ( ( ( A  e.  V  /\  B  e.  (
0 [,] +oo )
)  /\  x  e.  ( ~P A  i^i  Fin ) )  ->  0  <_  B )
6142, 60jca 541 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  B  e.  (
0 [,] +oo )
)  /\  x  e.  ( ~P A  i^i  Fin ) )  ->  ( B  e.  RR*  /\  0  <_  B ) )
626adantr 472 . . . . . . . . . 10  |-  ( ( ( A  e.  V  /\  B  e.  (
0 [,] +oo )
)  /\  x  e.  ( ~P A  i^i  Fin ) )  ->  A  e.  V )
63 inss1 3643 . . . . . . . . . . . 12  |-  ( ~P A  i^i  Fin )  C_ 
~P A
6463sseli 3414 . . . . . . . . . . 11  |-  ( x  e.  ( ~P A  i^i  Fin )  ->  x  e.  ~P A )
65 elpwi 3951 . . . . . . . . . . 11  |-  ( x  e.  ~P A  ->  x  C_  A )
6613, 64, 653syl 18 . . . . . . . . . 10  |-  ( ( ( A  e.  V  /\  B  e.  (
0 [,] +oo )
)  /\  x  e.  ( ~P A  i^i  Fin ) )  ->  x  C_  A )
67 ssdomg 7633 . . . . . . . . . 10  |-  ( A  e.  V  ->  (
x  C_  A  ->  x  ~<_  A ) )
6862, 66, 67sylc 61 . . . . . . . . 9  |-  ( ( ( A  e.  V  /\  B  e.  (
0 [,] +oo )
)  /\  x  e.  ( ~P A  i^i  Fin ) )  ->  x  ~<_  A )
69 hashdomi 12597 . . . . . . . . 9  |-  ( x  ~<_  A  ->  ( # `  x
)  <_  ( # `  A
) )
7068, 69syl 17 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  B  e.  (
0 [,] +oo )
)  /\  x  e.  ( ~P A  i^i  Fin ) )  ->  ( # `
 x )  <_ 
( # `  A ) )
71 xlemul1a 11599 . . . . . . . 8  |-  ( ( ( ( # `  x
)  e.  RR*  /\  ( # `
 A )  e. 
RR*  /\  ( B  e.  RR*  /\  0  <_  B ) )  /\  ( # `  x )  <_  ( # `  A
) )  ->  (
( # `  x ) xe B )  <_  ( ( # `  A ) xe B ) )
7238, 55, 61, 70, 71syl31anc 1295 . . . . . . 7  |-  ( ( ( A  e.  V  /\  B  e.  (
0 [,] +oo )
)  /\  x  e.  ( ~P A  i^i  Fin ) )  ->  (
( # `  x ) xe B )  <_  ( ( # `  A ) xe B ) )
7372ralrimiva 2809 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  ( 0 [,] +oo ) )  ->  A. x  e.  ( ~P A  i^i  Fin ) ( ( # `  x ) xe B )  <_  (
( # `  A ) xe B ) )
74 r19.29r 2913 . . . . . 6  |-  ( ( E. x  e.  ( ~P A  i^i  Fin ) y  =  ( ( # `  x
) xe B )  /\  A. x  e.  ( ~P A  i^i  Fin ) ( ( # `  x ) xe B )  <_  (
( # `  A ) xe B ) )  ->  E. x  e.  ( ~P A  i^i  Fin ) ( y  =  ( ( # `  x
) xe B )  /\  ( (
# `  x ) xe B )  <_  ( ( # `  A ) xe B ) ) )
7554, 73, 74syl2anr 486 . . . . 5  |-  ( ( ( A  e.  V  /\  B  e.  (
0 [,] +oo )
)  /\  y  e.  ran  ( x  e.  ( ~P A  i^i  Fin )  |->  ( ( # `  x ) xe B ) ) )  ->  E. x  e.  ( ~P A  i^i  Fin ) ( y  =  ( ( # `  x
) xe B )  /\  ( (
# `  x ) xe B )  <_  ( ( # `  A ) xe B ) ) )
76 simpl 464 . . . . . . 7  |-  ( ( y  =  ( (
# `  x ) xe B )  /\  ( ( # `  x ) xe B )  <_  (
( # `  A ) xe B ) )  ->  y  =  ( ( # `  x
) xe B ) )
77 simpr 468 . . . . . . 7  |-  ( ( y  =  ( (
# `  x ) xe B )  /\  ( ( # `  x ) xe B )  <_  (
( # `  A ) xe B ) )  ->  ( ( # `
 x ) xe B )  <_ 
( ( # `  A
) xe B ) )
7876, 77eqbrtrd 4416 . . . . . 6  |-  ( ( y  =  ( (
# `  x ) xe B )  /\  ( ( # `  x ) xe B )  <_  (
( # `  A ) xe B ) )  ->  y  <_  ( ( # `  A
) xe B ) )
7978rexlimivw 2869 . . . . 5  |-  ( E. x  e.  ( ~P A  i^i  Fin )
( y  =  ( ( # `  x
) xe B )  /\  ( (
# `  x ) xe B )  <_  ( ( # `  A ) xe B ) )  -> 
y  <_  ( ( # `
 A ) xe B ) )
8075, 79syl 17 . . . 4  |-  ( ( ( A  e.  V  /\  B  e.  (
0 [,] +oo )
)  /\  y  e.  ran  ( x  e.  ( ~P A  i^i  Fin )  |->  ( ( # `  x ) xe B ) ) )  ->  y  <_  (
( # `  A ) xe B ) )
8180ralrimiva 2809 . . 3  |-  ( ( A  e.  V  /\  B  e.  ( 0 [,] +oo ) )  ->  A. y  e.  ran  ( x  e.  ( ~P A  i^i  Fin )  |->  ( ( # `  x
) xe B ) ) y  <_ 
( ( # `  A
) xe B ) )
82 pwidg 3955 . . . . . . . . . . 11  |-  ( A  e.  Fin  ->  A  e.  ~P A )
8382ancri 561 . . . . . . . . . 10  |-  ( A  e.  Fin  ->  ( A  e.  ~P A  /\  A  e.  Fin ) )
84 elin 3608 . . . . . . . . . 10  |-  ( A  e.  ( ~P A  i^i  Fin )  <->  ( A  e.  ~P A  /\  A  e.  Fin ) )
8583, 84sylibr 217 . . . . . . . . 9  |-  ( A  e.  Fin  ->  A  e.  ( ~P A  i^i  Fin ) )
86 eqid 2471 . . . . . . . . . . 11  |-  ( (
# `  A ) xe B )  =  ( ( # `  A ) xe B )
87 fveq2 5879 . . . . . . . . . . . . . 14  |-  ( x  =  A  ->  ( # `
 x )  =  ( # `  A
) )
8887oveq1d 6323 . . . . . . . . . . . . 13  |-  ( x  =  A  ->  (
( # `  x ) xe B )  =  ( ( # `  A ) xe B ) )
8988eqeq2d 2481 . . . . . . . . . . . 12  |-  ( x  =  A  ->  (
( ( # `  A
) xe B )  =  ( (
# `  x ) xe B )  <-> 
( ( # `  A
) xe B )  =  ( (
# `  A ) xe B ) ) )
9089rspcev 3136 . . . . . . . . . . 11  |-  ( ( A  e.  ( ~P A  i^i  Fin )  /\  ( ( # `  A
) xe B )  =  ( (
# `  A ) xe B ) )  ->  E. x  e.  ( ~P A  i^i  Fin ) ( ( # `  A ) xe B )  =  ( ( # `  x
) xe B ) )
9186, 90mpan2 685 . . . . . . . . . 10  |-  ( A  e.  ( ~P A  i^i  Fin )  ->  E. x  e.  ( ~P A  i^i  Fin ) ( ( # `  A ) xe B )  =  ( ( # `  x
) xe B ) )
92 ovex 6336 . . . . . . . . . . 11  |-  ( (
# `  A ) xe B )  e.  _V
9344elrnmpt 5087 . . . . . . . . . . 11  |-  ( ( ( # `  A
) xe B )  e.  _V  ->  ( ( ( # `  A
) xe B )  e.  ran  (
x  e.  ( ~P A  i^i  Fin )  |->  ( ( # `  x
) xe B ) )  <->  E. x  e.  ( ~P A  i^i  Fin ) ( ( # `  A ) xe B )  =  ( ( # `  x
) xe B ) ) )
9492, 93ax-mp 5 . . . . . . . . . 10  |-  ( ( ( # `  A
) xe B )  e.  ran  (
x  e.  ( ~P A  i^i  Fin )  |->  ( ( # `  x
) xe B ) )  <->  E. x  e.  ( ~P A  i^i  Fin ) ( ( # `  A ) xe B )  =  ( ( # `  x
) xe B ) )
9591, 94sylibr 217 . . . . . . . . 9  |-  ( A  e.  ( ~P A  i^i  Fin )  ->  (
( # `  A ) xe B )  e.  ran  ( x  e.  ( ~P A  i^i  Fin )  |->  ( (
# `  x ) xe B ) ) )
9685, 95syl 17 . . . . . . . 8  |-  ( A  e.  Fin  ->  (
( # `  A ) xe B )  e.  ran  ( x  e.  ( ~P A  i^i  Fin )  |->  ( (
# `  x ) xe B ) ) )
9796adantl 473 . . . . . . 7  |-  ( ( ( ( ( A  e.  V  /\  B  e.  ( 0 [,] +oo ) )  /\  y  e.  RR )  /\  y  <  ( ( # `  A
) xe B ) )  /\  A  e.  Fin )  ->  (
( # `  A ) xe B )  e.  ran  ( x  e.  ( ~P A  i^i  Fin )  |->  ( (
# `  x ) xe B ) ) )
98 simplr 770 . . . . . . 7  |-  ( ( ( ( ( A  e.  V  /\  B  e.  ( 0 [,] +oo ) )  /\  y  e.  RR )  /\  y  <  ( ( # `  A
) xe B ) )  /\  A  e.  Fin )  ->  y  <  ( ( # `  A
) xe B ) )
99 breq2 4399 . . . . . . . 8  |-  ( z  =  ( ( # `  A ) xe B )  ->  (
y  <  z  <->  y  <  ( ( # `  A
) xe B ) ) )
10099rspcev 3136 . . . . . . 7  |-  ( ( ( ( # `  A
) xe B )  e.  ran  (
x  e.  ( ~P A  i^i  Fin )  |->  ( ( # `  x
) xe B ) )  /\  y  <  ( ( # `  A
) xe B ) )  ->  E. z  e.  ran  ( x  e.  ( ~P A  i^i  Fin )  |->  ( ( # `  x ) xe B ) ) y  <  z )
10197, 98, 100syl2anc 673 . . . . . 6  |-  ( ( ( ( ( A  e.  V  /\  B  e.  ( 0 [,] +oo ) )  /\  y  e.  RR )  /\  y  <  ( ( # `  A
) xe B ) )  /\  A  e.  Fin )  ->  E. z  e.  ran  ( x  e.  ( ~P A  i^i  Fin )  |->  ( ( # `  x ) xe B ) ) y  <  z )
102 0elpw 4570 . . . . . . . . . . . 12  |-  (/)  e.  ~P A
103 0fin 7817 . . . . . . . . . . . 12  |-  (/)  e.  Fin
104 elin 3608 . . . . . . . . . . . 12  |-  ( (/)  e.  ( ~P A  i^i  Fin )  <->  ( (/)  e.  ~P A  /\  (/)  e.  Fin )
)
105102, 103, 104mpbir2an 934 . . . . . . . . . . 11  |-  (/)  e.  ( ~P A  i^i  Fin )
106105a1i 11 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  V  /\  B  e.  ( 0 [,] +oo ) )  /\  y  e.  RR )  /\  y  <  (
( # `  A ) xe B ) )  /\  -.  A  e.  Fin )  /\  B  =  0 )  ->  (/) 
e.  ( ~P A  i^i  Fin ) )
107 simpr 468 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  V  /\  B  e.  ( 0 [,] +oo ) )  /\  y  e.  RR )  /\  y  <  (
( # `  A ) xe B ) )  /\  -.  A  e.  Fin )  /\  B  =  0 )  ->  B  =  0 )
108107oveq2d 6324 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  V  /\  B  e.  ( 0 [,] +oo ) )  /\  y  e.  RR )  /\  y  <  (
( # `  A ) xe B ) )  /\  -.  A  e.  Fin )  /\  B  =  0 )  -> 
( ( # `  (/) ) xe B )  =  ( ( # `  (/) ) xe 0 ) )
109 hash0 12586 . . . . . . . . . . . . 13  |-  ( # `  (/) )  =  0
110109, 56eqeltri 2545 . . . . . . . . . . . 12  |-  ( # `  (/) )  e.  RR*
111 xmul01 11578 . . . . . . . . . . . 12  |-  ( (
# `  (/) )  e. 
RR*  ->  ( ( # `  (/) ) xe 0 )  =  0 )
112110, 111ax-mp 5 . . . . . . . . . . 11  |-  ( (
# `  (/) ) xe 0 )  =  0
113108, 112syl6req 2522 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  V  /\  B  e.  ( 0 [,] +oo ) )  /\  y  e.  RR )  /\  y  <  (
( # `  A ) xe B ) )  /\  -.  A  e.  Fin )  /\  B  =  0 )  -> 
0  =  ( (
# `  (/) ) xe B ) )
114 fveq2 5879 . . . . . . . . . . . . 13  |-  ( x  =  (/)  ->  ( # `  x )  =  (
# `  (/) ) )
115114oveq1d 6323 . . . . . . . . . . . 12  |-  ( x  =  (/)  ->  ( (
# `  x ) xe B )  =  ( ( # `  (/) ) xe B ) )
116115eqeq2d 2481 . . . . . . . . . . 11  |-  ( x  =  (/)  ->  ( 0  =  ( ( # `  x ) xe B )  <->  0  =  ( ( # `  (/) ) xe B ) ) )
117116rspcev 3136 . . . . . . . . . 10  |-  ( (
(/)  e.  ( ~P A  i^i  Fin )  /\  0  =  ( ( # `
 (/) ) xe B ) )  ->  E. x  e.  ( ~P A  i^i  Fin )
0  =  ( (
# `  x ) xe B ) )
118106, 113, 117syl2anc 673 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  V  /\  B  e.  ( 0 [,] +oo ) )  /\  y  e.  RR )  /\  y  <  (
( # `  A ) xe B ) )  /\  -.  A  e.  Fin )  /\  B  =  0 )  ->  E. x  e.  ( ~P A  i^i  Fin )
0  =  ( (
# `  x ) xe B ) )
119 ovex 6336 . . . . . . . . . 10  |-  ( (
# `  x ) xe B )  e.  _V
12044, 119elrnmpti 5091 . . . . . . . . 9  |-  ( 0  e.  ran  ( x  e.  ( ~P A  i^i  Fin )  |->  ( (
# `  x ) xe B ) )  <->  E. x  e.  ( ~P A  i^i  Fin ) 0  =  ( ( # `  x
) xe B ) )
121118, 120sylibr 217 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  V  /\  B  e.  ( 0 [,] +oo ) )  /\  y  e.  RR )  /\  y  <  (
( # `  A ) xe B ) )  /\  -.  A  e.  Fin )  /\  B  =  0 )  -> 
0  e.  ran  (
x  e.  ( ~P A  i^i  Fin )  |->  ( ( # `  x
) xe B ) ) )
122 simpllr 777 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  V  /\  B  e.  ( 0 [,] +oo ) )  /\  y  e.  RR )  /\  y  <  (
( # `  A ) xe B ) )  /\  -.  A  e.  Fin )  /\  B  =  0 )  -> 
y  <  ( ( # `
 A ) xe B ) )
123107oveq2d 6324 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  V  /\  B  e.  ( 0 [,] +oo ) )  /\  y  e.  RR )  /\  y  <  (
( # `  A ) xe B ) )  /\  -.  A  e.  Fin )  /\  B  =  0 )  -> 
( ( # `  A
) xe B )  =  ( (
# `  A ) xe 0 ) )
12449ad4antr 746 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  V  /\  B  e.  ( 0 [,] +oo ) )  /\  y  e.  RR )  /\  y  <  (
( # `  A ) xe B ) )  /\  -.  A  e.  Fin )  /\  B  =  0 )  -> 
( # `  A )  e.  RR* )
125 xmul01 11578 . . . . . . . . . . 11  |-  ( (
# `  A )  e.  RR*  ->  ( ( # `
 A ) xe 0 )  =  0 )
126124, 125syl 17 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  V  /\  B  e.  ( 0 [,] +oo ) )  /\  y  e.  RR )  /\  y  <  (
( # `  A ) xe B ) )  /\  -.  A  e.  Fin )  /\  B  =  0 )  -> 
( ( # `  A
) xe 0 )  =  0 )
127123, 126eqtrd 2505 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  V  /\  B  e.  ( 0 [,] +oo ) )  /\  y  e.  RR )  /\  y  <  (
( # `  A ) xe B ) )  /\  -.  A  e.  Fin )  /\  B  =  0 )  -> 
( ( # `  A
) xe B )  =  0 )
128122, 127breqtrd 4420 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  V  /\  B  e.  ( 0 [,] +oo ) )  /\  y  e.  RR )  /\  y  <  (
( # `  A ) xe B ) )  /\  -.  A  e.  Fin )  /\  B  =  0 )  -> 
y  <  0 )
129 breq2 4399 . . . . . . . . 9  |-  ( z  =  0  ->  (
y  <  z  <->  y  <  0 ) )
130129rspcev 3136 . . . . . . . 8  |-  ( ( 0  e.  ran  (
x  e.  ( ~P A  i^i  Fin )  |->  ( ( # `  x
) xe B ) )  /\  y  <  0 )  ->  E. z  e.  ran  ( x  e.  ( ~P A  i^i  Fin )  |->  ( ( # `  x ) xe B ) ) y  <  z )
131121, 128, 130syl2anc 673 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  V  /\  B  e.  ( 0 [,] +oo ) )  /\  y  e.  RR )  /\  y  <  (
( # `  A ) xe B ) )  /\  -.  A  e.  Fin )  /\  B  =  0 )  ->  E. z  e.  ran  ( x  e.  ( ~P A  i^i  Fin )  |->  ( ( # `  x
) xe B ) ) y  < 
z )
132 simplr 770 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( ( ( A  e.  V  /\  B  e.  ( 0 [,] +oo ) )  /\  y  e.  RR )  /\  y  <  (
( # `  A ) xe B ) )  /\  -.  A  e.  Fin )  /\  B  e.  RR+ )  /\  n  e.  NN )  /\  (
y  /  B )  <  n )  /\  a  e.  ~P A
)  /\  ( # `  a
)  =  n )  ->  a  e.  ~P A )
133 simpr 468 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( ( ( ( A  e.  V  /\  B  e.  ( 0 [,] +oo ) )  /\  y  e.  RR )  /\  y  <  (
( # `  A ) xe B ) )  /\  -.  A  e.  Fin )  /\  B  e.  RR+ )  /\  n  e.  NN )  /\  (
y  /  B )  <  n )  /\  a  e.  ~P A
)  /\  ( # `  a
)  =  n )  ->  ( # `  a
)  =  n )
134 simp-4r 785 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( ( ( ( A  e.  V  /\  B  e.  ( 0 [,] +oo ) )  /\  y  e.  RR )  /\  y  <  (
( # `  A ) xe B ) )  /\  -.  A  e.  Fin )  /\  B  e.  RR+ )  /\  n  e.  NN )  /\  (
y  /  B )  <  n )  /\  a  e.  ~P A
)  /\  ( # `  a
)  =  n )  ->  n  e.  NN )
135133, 134eqeltrd 2549 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ( ( ( A  e.  V  /\  B  e.  ( 0 [,] +oo ) )  /\  y  e.  RR )  /\  y  <  (
( # `  A ) xe B ) )  /\  -.  A  e.  Fin )  /\  B  e.  RR+ )  /\  n  e.  NN )  /\  (
y  /  B )  <  n )  /\  a  e.  ~P A
)  /\  ( # `  a
)  =  n )  ->  ( # `  a
)  e.  NN )
136 nnnn0 10900 . . . . . . . . . . . . . . . . 17  |-  ( (
# `  a )  e.  NN  ->  ( # `  a
)  e.  NN0 )
137 vex 3034 . . . . . . . . . . . . . . . . . 18  |-  a  e. 
_V
138 hashclb 12578 . . . . . . . . . . . . . . . . . 18  |-  ( a  e.  _V  ->  (
a  e.  Fin  <->  ( # `  a
)  e.  NN0 )
)
139137, 138ax-mp 5 . . . . . . . . . . . . . . . . 17  |-  ( a  e.  Fin  <->  ( # `  a
)  e.  NN0 )
140136, 139sylibr 217 . . . . . . . . . . . . . . . 16  |-  ( (
# `  a )  e.  NN  ->  a  e.  Fin )
141135, 140syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( ( ( A  e.  V  /\  B  e.  ( 0 [,] +oo ) )  /\  y  e.  RR )  /\  y  <  (
( # `  A ) xe B ) )  /\  -.  A  e.  Fin )  /\  B  e.  RR+ )  /\  n  e.  NN )  /\  (
y  /  B )  <  n )  /\  a  e.  ~P A
)  /\  ( # `  a
)  =  n )  ->  a  e.  Fin )
142132, 141elind 3609 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( ( ( A  e.  V  /\  B  e.  ( 0 [,] +oo ) )  /\  y  e.  RR )  /\  y  <  (
( # `  A ) xe B ) )  /\  -.  A  e.  Fin )  /\  B  e.  RR+ )  /\  n  e.  NN )  /\  (
y  /  B )  <  n )  /\  a  e.  ~P A
)  /\  ( # `  a
)  =  n )  ->  a  e.  ( ~P A  i^i  Fin ) )
143 eqidd 2472 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( ( ( A  e.  V  /\  B  e.  ( 0 [,] +oo ) )  /\  y  e.  RR )  /\  y  <  (
( # `  A ) xe B ) )  /\  -.  A  e.  Fin )  /\  B  e.  RR+ )  /\  n  e.  NN )  /\  (
y  /  B )  <  n )  /\  a  e.  ~P A
)  /\  ( # `  a
)  =  n )  ->  ( ( # `  a ) xe B )  =  ( ( # `  a
) xe B ) )
144 fveq2 5879 . . . . . . . . . . . . . . . . 17  |-  ( x  =  a  ->  ( # `
 x )  =  ( # `  a
) )
145144oveq1d 6323 . . . . . . . . . . . . . . . 16  |-  ( x  =  a  ->  (
( # `  x ) xe B )  =  ( ( # `  a ) xe B ) )
146145eqeq2d 2481 . . . . . . . . . . . . . . 15  |-  ( x  =  a  ->  (
( ( # `  a
) xe B )  =  ( (
# `  x ) xe B )  <-> 
( ( # `  a
) xe B )  =  ( (
# `  a ) xe B ) ) )
147146rspcev 3136 . . . . . . . . . . . . . 14  |-  ( ( a  e.  ( ~P A  i^i  Fin )  /\  ( ( # `  a
) xe B )  =  ( (
# `  a ) xe B ) )  ->  E. x  e.  ( ~P A  i^i  Fin ) ( ( # `  a ) xe B )  =  ( ( # `  x
) xe B ) )
148142, 143, 147syl2anc 673 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( ( ( A  e.  V  /\  B  e.  ( 0 [,] +oo ) )  /\  y  e.  RR )  /\  y  <  (
( # `  A ) xe B ) )  /\  -.  A  e.  Fin )  /\  B  e.  RR+ )  /\  n  e.  NN )  /\  (
y  /  B )  <  n )  /\  a  e.  ~P A
)  /\  ( # `  a
)  =  n )  ->  E. x  e.  ( ~P A  i^i  Fin ) ( ( # `  a ) xe B )  =  ( ( # `  x
) xe B ) )
14944, 119elrnmpti 5091 . . . . . . . . . . . . 13  |-  ( ( ( # `  a
) xe B )  e.  ran  (
x  e.  ( ~P A  i^i  Fin )  |->  ( ( # `  x
) xe B ) )  <->  E. x  e.  ( ~P A  i^i  Fin ) ( ( # `  a ) xe B )  =  ( ( # `  x
) xe B ) )
150148, 149sylibr 217 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( ( ( A  e.  V  /\  B  e.  ( 0 [,] +oo ) )  /\  y  e.  RR )  /\  y  <  (
( # `  A ) xe B ) )  /\  -.  A  e.  Fin )  /\  B  e.  RR+ )  /\  n  e.  NN )  /\  (
y  /  B )  <  n )  /\  a  e.  ~P A
)  /\  ( # `  a
)  =  n )  ->  ( ( # `  a ) xe B )  e.  ran  ( x  e.  ( ~P A  i^i  Fin )  |->  ( ( # `  x
) xe B ) ) )
151 simpllr 777 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( ( ( A  e.  V  /\  B  e.  ( 0 [,] +oo ) )  /\  y  e.  RR )  /\  y  <  (
( # `  A ) xe B ) )  /\  -.  A  e.  Fin )  /\  B  e.  RR+ )  /\  n  e.  NN )  /\  (
y  /  B )  <  n )  /\  a  e.  ~P A
)  /\  ( # `  a
)  =  n )  ->  ( y  /  B )  <  n
)
152 simp-8r 793 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( ( ( A  e.  V  /\  B  e.  ( 0 [,] +oo ) )  /\  y  e.  RR )  /\  y  <  (
( # `  A ) xe B ) )  /\  -.  A  e.  Fin )  /\  B  e.  RR+ )  /\  n  e.  NN )  /\  (
y  /  B )  <  n )  /\  a  e.  ~P A
)  /\  ( # `  a
)  =  n )  ->  y  e.  RR )
153134nnred 10646 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( ( ( A  e.  V  /\  B  e.  ( 0 [,] +oo ) )  /\  y  e.  RR )  /\  y  <  (
( # `  A ) xe B ) )  /\  -.  A  e.  Fin )  /\  B  e.  RR+ )  /\  n  e.  NN )  /\  (
y  /  B )  <  n )  /\  a  e.  ~P A
)  /\  ( # `  a
)  =  n )  ->  n  e.  RR )
154 simp-5r 787 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( ( ( A  e.  V  /\  B  e.  ( 0 [,] +oo ) )  /\  y  e.  RR )  /\  y  <  (
( # `  A ) xe B ) )  /\  -.  A  e.  Fin )  /\  B  e.  RR+ )  /\  n  e.  NN )  /\  (
y  /  B )  <  n )  /\  a  e.  ~P A
)  /\  ( # `  a
)  =  n )  ->  B  e.  RR+ )
155152, 153, 154ltdivmul2d 11413 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( ( ( A  e.  V  /\  B  e.  ( 0 [,] +oo ) )  /\  y  e.  RR )  /\  y  <  (
( # `  A ) xe B ) )  /\  -.  A  e.  Fin )  /\  B  e.  RR+ )  /\  n  e.  NN )  /\  (
y  /  B )  <  n )  /\  a  e.  ~P A
)  /\  ( # `  a
)  =  n )  ->  ( ( y  /  B )  < 
n  <->  y  <  (
n  x.  B ) ) )
156151, 155mpbid 215 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( ( ( A  e.  V  /\  B  e.  ( 0 [,] +oo ) )  /\  y  e.  RR )  /\  y  <  (
( # `  A ) xe B ) )  /\  -.  A  e.  Fin )  /\  B  e.  RR+ )  /\  n  e.  NN )  /\  (
y  /  B )  <  n )  /\  a  e.  ~P A
)  /\  ( # `  a
)  =  n )  ->  y  <  (
n  x.  B ) )
157133oveq1d 6323 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( ( ( A  e.  V  /\  B  e.  ( 0 [,] +oo ) )  /\  y  e.  RR )  /\  y  <  (
( # `  A ) xe B ) )  /\  -.  A  e.  Fin )  /\  B  e.  RR+ )  /\  n  e.  NN )  /\  (
y  /  B )  <  n )  /\  a  e.  ~P A
)  /\  ( # `  a
)  =  n )  ->  ( ( # `  a ) xe B )  =  ( n xe B ) )
158154rpred 11364 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( ( ( A  e.  V  /\  B  e.  ( 0 [,] +oo ) )  /\  y  e.  RR )  /\  y  <  (
( # `  A ) xe B ) )  /\  -.  A  e.  Fin )  /\  B  e.  RR+ )  /\  n  e.  NN )  /\  (
y  /  B )  <  n )  /\  a  e.  ~P A
)  /\  ( # `  a
)  =  n )  ->  B  e.  RR )
159 rexmul 11582 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  RR  /\  B  e.  RR )  ->  ( n xe B )  =  ( n  x.  B ) )
160153, 158, 159syl2anc 673 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( ( ( A  e.  V  /\  B  e.  ( 0 [,] +oo ) )  /\  y  e.  RR )  /\  y  <  (
( # `  A ) xe B ) )  /\  -.  A  e.  Fin )  /\  B  e.  RR+ )  /\  n  e.  NN )  /\  (
y  /  B )  <  n )  /\  a  e.  ~P A
)  /\  ( # `  a
)  =  n )  ->  ( n xe B )  =  ( n  x.  B
) )
161157, 160eqtrd 2505 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( ( ( A  e.  V  /\  B  e.  ( 0 [,] +oo ) )  /\  y  e.  RR )  /\  y  <  (
( # `  A ) xe B ) )  /\  -.  A  e.  Fin )  /\  B  e.  RR+ )  /\  n  e.  NN )  /\  (
y  /  B )  <  n )  /\  a  e.  ~P A
)  /\  ( # `  a
)  =  n )  ->  ( ( # `  a ) xe B )  =  ( n  x.  B ) )
162156, 161breqtrrd 4422 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( ( ( A  e.  V  /\  B  e.  ( 0 [,] +oo ) )  /\  y  e.  RR )  /\  y  <  (
( # `  A ) xe B ) )  /\  -.  A  e.  Fin )  /\  B  e.  RR+ )  /\  n  e.  NN )  /\  (
y  /  B )  <  n )  /\  a  e.  ~P A
)  /\  ( # `  a
)  =  n )  ->  y  <  (
( # `  a ) xe B ) )
163 breq2 4399 . . . . . . . . . . . . 13  |-  ( z  =  ( ( # `  a ) xe B )  ->  (
y  <  z  <->  y  <  ( ( # `  a
) xe B ) ) )
164163rspcev 3136 . . . . . . . . . . . 12  |-  ( ( ( ( # `  a
) xe B )  e.  ran  (
x  e.  ( ~P A  i^i  Fin )  |->  ( ( # `  x
) xe B ) )  /\  y  <  ( ( # `  a
) xe B ) )  ->  E. z  e.  ran  ( x  e.  ( ~P A  i^i  Fin )  |->  ( ( # `  x ) xe B ) ) y  <  z )
165150, 162, 164syl2anc 673 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( ( ( A  e.  V  /\  B  e.  ( 0 [,] +oo ) )  /\  y  e.  RR )  /\  y  <  (
( # `  A ) xe B ) )  /\  -.  A  e.  Fin )  /\  B  e.  RR+ )  /\  n  e.  NN )  /\  (
y  /  B )  <  n )  /\  a  e.  ~P A
)  /\  ( # `  a
)  =  n )  ->  E. z  e.  ran  ( x  e.  ( ~P A  i^i  Fin )  |->  ( ( # `  x
) xe B ) ) y  < 
z )
166165ex 441 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ( ( A  e.  V  /\  B  e.  ( 0 [,] +oo ) )  /\  y  e.  RR )  /\  y  <  ( ( # `  A
) xe B ) )  /\  -.  A  e.  Fin )  /\  B  e.  RR+ )  /\  n  e.  NN )  /\  ( y  /  B )  <  n
)  /\  a  e.  ~P A )  ->  (
( # `  a )  =  n  ->  E. z  e.  ran  ( x  e.  ( ~P A  i^i  Fin )  |->  ( ( # `  x ) xe B ) ) y  <  z ) )
167166rexlimdva 2871 . . . . . . . . 9  |-  ( ( ( ( ( ( ( ( A  e.  V  /\  B  e.  ( 0 [,] +oo ) )  /\  y  e.  RR )  /\  y  <  ( ( # `  A
) xe B ) )  /\  -.  A  e.  Fin )  /\  B  e.  RR+ )  /\  n  e.  NN )  /\  ( y  /  B )  <  n
)  ->  ( E. a  e.  ~P  A
( # `  a )  =  n  ->  E. z  e.  ran  ( x  e.  ( ~P A  i^i  Fin )  |->  ( ( # `  x ) xe B ) ) y  <  z ) )
168167impr 631 . . . . . . . 8  |-  ( ( ( ( ( ( ( ( A  e.  V  /\  B  e.  ( 0 [,] +oo ) )  /\  y  e.  RR )  /\  y  <  ( ( # `  A
) xe B ) )  /\  -.  A  e.  Fin )  /\  B  e.  RR+ )  /\  n  e.  NN )  /\  ( ( y  /  B )  < 
n  /\  E. a  e.  ~P  A ( # `  a )  =  n ) )  ->  E. z  e.  ran  ( x  e.  ( ~P A  i^i  Fin )  |->  ( ( # `  x ) xe B ) ) y  <  z )
169 simp-4r 785 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  V  /\  B  e.  ( 0 [,] +oo ) )  /\  y  e.  RR )  /\  y  <  (
( # `  A ) xe B ) )  /\  -.  A  e.  Fin )  /\  B  e.  RR+ )  ->  y  e.  RR )
170 simpr 468 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  V  /\  B  e.  ( 0 [,] +oo ) )  /\  y  e.  RR )  /\  y  <  (
( # `  A ) xe B ) )  /\  -.  A  e.  Fin )  /\  B  e.  RR+ )  ->  B  e.  RR+ )
171169, 170rerpdivcld 11392 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  V  /\  B  e.  ( 0 [,] +oo ) )  /\  y  e.  RR )  /\  y  <  (
( # `  A ) xe B ) )  /\  -.  A  e.  Fin )  /\  B  e.  RR+ )  ->  (
y  /  B )  e.  RR )
172 arch 10890 . . . . . . . . . 10  |-  ( ( y  /  B )  e.  RR  ->  E. n  e.  NN  ( y  /  B )  <  n
)
173171, 172syl 17 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  V  /\  B  e.  ( 0 [,] +oo ) )  /\  y  e.  RR )  /\  y  <  (
( # `  A ) xe B ) )  /\  -.  A  e.  Fin )  /\  B  e.  RR+ )  ->  E. n  e.  NN  ( y  /  B )  <  n
)
174 ishashinf 12667 . . . . . . . . . 10  |-  ( -.  A  e.  Fin  ->  A. n  e.  NN  E. a  e.  ~P  A
( # `  a )  =  n )
175174ad2antlr 741 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  V  /\  B  e.  ( 0 [,] +oo ) )  /\  y  e.  RR )  /\  y  <  (
( # `  A ) xe B ) )  /\  -.  A  e.  Fin )  /\  B  e.  RR+ )  ->  A. n  e.  NN  E. a  e. 
~P  A ( # `  a )  =  n )
176 r19.29r 2913 . . . . . . . . 9  |-  ( ( E. n  e.  NN  ( y  /  B
)  <  n  /\  A. n  e.  NN  E. a  e.  ~P  A
( # `  a )  =  n )  ->  E. n  e.  NN  ( ( y  /  B )  <  n  /\  E. a  e.  ~P  A ( # `  a
)  =  n ) )
177173, 175, 176syl2anc 673 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  V  /\  B  e.  ( 0 [,] +oo ) )  /\  y  e.  RR )  /\  y  <  (
( # `  A ) xe B ) )  /\  -.  A  e.  Fin )  /\  B  e.  RR+ )  ->  E. n  e.  NN  ( ( y  /  B )  < 
n  /\  E. a  e.  ~P  A ( # `  a )  =  n ) )
178168, 177r19.29a 2918 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  V  /\  B  e.  ( 0 [,] +oo ) )  /\  y  e.  RR )  /\  y  <  (
( # `  A ) xe B ) )  /\  -.  A  e.  Fin )  /\  B  e.  RR+ )  ->  E. z  e.  ran  ( x  e.  ( ~P A  i^i  Fin )  |->  ( ( # `  x ) xe B ) ) y  <  z )
179 nfielex 7818 . . . . . . . . . . . 12  |-  ( -.  A  e.  Fin  ->  E. l  l  e.  A
)
180179adantr 472 . . . . . . . . . . 11  |-  ( ( -.  A  e.  Fin  /\  B  = +oo )  ->  E. l  l  e.  A )
181 snelpwi 4645 . . . . . . . . . . . . . . 15  |-  ( l  e.  A  ->  { l }  e.  ~P A
)
182 snfi 7668 . . . . . . . . . . . . . . 15  |-  { l }  e.  Fin
183181, 182jctir 547 . . . . . . . . . . . . . 14  |-  ( l  e.  A  ->  ( { l }  e.  ~P A  /\  { l }  e.  Fin )
)
184 elin 3608 . . . . . . . . . . . . . 14  |-  ( { l }  e.  ( ~P A  i^i  Fin ) 
<->  ( { l }  e.  ~P A  /\  { l }  e.  Fin ) )
185183, 184sylibr 217 . . . . . . . . . . . . 13  |-  ( l  e.  A  ->  { l }  e.  ( ~P A  i^i  Fin )
)
186185adantl 473 . . . . . . . . . . . 12  |-  ( ( ( -.  A  e. 
Fin  /\  B  = +oo )  /\  l  e.  A )  ->  { l }  e.  ( ~P A  i^i  Fin )
)
187 simplr 770 . . . . . . . . . . . . . 14  |-  ( ( ( -.  A  e. 
Fin  /\  B  = +oo )  /\  l  e.  A )  ->  B  = +oo )
188187oveq2d 6324 . . . . . . . . . . . . 13  |-  ( ( ( -.  A  e. 
Fin  /\  B  = +oo )  /\  l  e.  A )  ->  (
( # `  { l } ) xe B )  =  ( ( # `  {
l } ) xe +oo ) )
189 hashsng 12587 . . . . . . . . . . . . . . . 16  |-  ( l  e.  A  ->  ( # `
 { l } )  =  1 )
190 1re 9660 . . . . . . . . . . . . . . . . 17  |-  1  e.  RR
19127, 190sselii 3415 . . . . . . . . . . . . . . . 16  |-  1  e.  RR*
192189, 191syl6eqel 2557 . . . . . . . . . . . . . . 15  |-  ( l  e.  A  ->  ( # `
 { l } )  e.  RR* )
193 0lt1 10157 . . . . . . . . . . . . . . . 16  |-  0  <  1
194193, 189syl5breqr 4432 . . . . . . . . . . . . . . 15  |-  ( l  e.  A  ->  0  <  ( # `  {
l } ) )
195 xmulpnf1 11585 . . . . . . . . . . . . . . 15  |-  ( ( ( # `  {
l } )  e. 
RR*  /\  0  <  (
# `  { l } ) )  -> 
( ( # `  {
l } ) xe +oo )  = +oo )
196192, 194, 195syl2anc 673 . . . . . . . . . . . . . 14  |-  ( l  e.  A  ->  (
( # `  { l } ) xe +oo )  = +oo )
197196adantl 473 . . . . . . . . . . . . 13  |-  ( ( ( -.  A  e. 
Fin  /\  B  = +oo )  /\  l  e.  A )  ->  (
( # `  { l } ) xe +oo )  = +oo )
198188, 197eqtr2d 2506 . . . . . . . . . . . 12  |-  ( ( ( -.  A  e. 
Fin  /\  B  = +oo )  /\  l  e.  A )  -> +oo  =  ( ( # `  {
l } ) xe B ) )
199 fveq2 5879 . . . . . . . . . . . . . . 15  |-  ( x  =  { l }  ->  ( # `  x
)  =  ( # `  { l } ) )
200199oveq1d 6323 . . . . . . . . . . . . . 14  |-  ( x  =  { l }  ->  ( ( # `  x ) xe B )  =  ( ( # `  {
l } ) xe B ) )
201200eqeq2d 2481 . . . . . . . . . . . . 13  |-  ( x  =  { l }  ->  ( +oo  =  ( ( # `  x
) xe B )  <-> +oo  =  ( (
# `  { l } ) xe B ) ) )
202201rspcev 3136 . . . . . . . . . . . 12  |-  ( ( { l }  e.  ( ~P A  i^i  Fin )  /\ +oo  =  ( ( # `  {
l } ) xe B ) )  ->  E. x  e.  ( ~P A  i^i  Fin ) +oo  =  ( (
# `  x ) xe B ) )
203186, 198, 202syl2anc 673 . . . . . . . . . . 11  |-  ( ( ( -.  A  e. 
Fin  /\  B  = +oo )  /\  l  e.  A )  ->  E. x  e.  ( ~P A  i^i  Fin ) +oo  =  ( ( # `  x
) xe B ) )
204180, 203exlimddv 1789 . . . . . . . . . 10  |-  ( ( -.  A  e.  Fin  /\  B  = +oo )  ->  E. x  e.  ( ~P A  i^i  Fin ) +oo  =  ( (
# `  x ) xe B ) )
205204adantll 728 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  V  /\  B  e.  ( 0 [,] +oo ) )  /\  y  e.  RR )  /\  y  <  (
( # `  A ) xe B ) )  /\  -.  A  e.  Fin )  /\  B  = +oo )  ->  E. x  e.  ( ~P A  i^i  Fin ) +oo  =  ( ( # `  x
) xe B ) )
20644, 119elrnmpti 5091 . . . . . . . . 9  |-  ( +oo  e.  ran  ( x  e.  ( ~P A  i^i  Fin )  |->  ( ( # `  x ) xe B ) )  <->  E. x  e.  ( ~P A  i^i  Fin ) +oo  =  ( ( # `  x
) xe B ) )
207205, 206sylibr 217 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  V  /\  B  e.  ( 0 [,] +oo ) )  /\  y  e.  RR )  /\  y  <  (
( # `  A ) xe B ) )  /\  -.  A  e.  Fin )  /\  B  = +oo )  -> +oo  e.  ran  ( x  e.  ( ~P A  i^i  Fin )  |->  ( ( # `  x ) xe B ) ) )
208 simp-4r 785 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  V  /\  B  e.  ( 0 [,] +oo ) )  /\  y  e.  RR )  /\  y  <  (
( # `  A ) xe B ) )  /\  -.  A  e.  Fin )  /\  B  = +oo )  ->  y  e.  RR )
209 ltpnf 11445 . . . . . . . . 9  |-  ( y  e.  RR  ->  y  < +oo )
210208, 209syl 17 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  V  /\  B  e.  ( 0 [,] +oo ) )  /\  y  e.  RR )  /\  y  <  (
( # `  A ) xe B ) )  /\  -.  A  e.  Fin )  /\  B  = +oo )  ->  y  < +oo )
211 breq2 4399 . . . . . . . . 9  |-  ( z  = +oo  ->  (
y  <  z  <->  y  < +oo ) )
212211rspcev 3136 . . . . . . . 8  |-  ( ( +oo  e.  ran  (
x  e.  ( ~P A  i^i  Fin )  |->  ( ( # `  x
) xe B ) )  /\  y  < +oo )  ->  E. z  e.  ran  ( x  e.  ( ~P A  i^i  Fin )  |->  ( ( # `  x ) xe B ) ) y  <  z )
213207, 210, 212syl2anc 673 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  V  /\  B  e.  ( 0 [,] +oo ) )  /\  y  e.  RR )  /\  y  <  (
( # `  A ) xe B ) )  /\  -.  A  e.  Fin )  /\  B  = +oo )  ->  E. z  e.  ran  ( x  e.  ( ~P A  i^i  Fin )  |->  ( ( # `  x ) xe B ) ) y  <  z )
214 simp-4r 785 . . . . . . . 8  |-  ( ( ( ( ( A  e.  V  /\  B  e.  ( 0 [,] +oo ) )  /\  y  e.  RR )  /\  y  <  ( ( # `  A
) xe B ) )  /\  -.  A  e.  Fin )  ->  B  e.  ( 0 [,] +oo ) )
215 elxrge02 28476 . . . . . . . 8  |-  ( B  e.  ( 0 [,] +oo )  <->  ( B  =  0  \/  B  e.  RR+  \/  B  = +oo ) )
216214, 215sylib 201 . . . . . . 7  |-  ( ( ( ( ( A  e.  V  /\  B  e.  ( 0 [,] +oo ) )  /\  y  e.  RR )  /\  y  <  ( ( # `  A
) xe B ) )  /\  -.  A  e.  Fin )  ->  ( B  =  0  \/  B  e.  RR+  \/  B  = +oo )
)
217131, 178, 213, 216mpjao3dan 1361 . . . . . 6  |-  ( ( ( ( ( A  e.  V  /\  B  e.  ( 0 [,] +oo ) )  /\  y  e.  RR )  /\  y  <  ( ( # `  A
) xe B ) )  /\  -.  A  e.  Fin )  ->  E. z  e.  ran  ( x  e.  ( ~P A  i^i  Fin )  |->  ( ( # `  x
) xe B ) ) y  < 
z )
218101, 217pm2.61dan 808 . . . . 5  |-  ( ( ( ( A  e.  V  /\  B  e.  ( 0 [,] +oo ) )  /\  y  e.  RR )  /\  y  <  ( ( # `  A
) xe B ) )  ->  E. z  e.  ran  ( x  e.  ( ~P A  i^i  Fin )  |->  ( ( # `  x ) xe B ) ) y  <  z )
219218ex 441 . . . 4  |-  ( ( ( A  e.  V  /\  B  e.  (
0 [,] +oo )
)  /\  y  e.  RR )  ->  ( y  <  ( ( # `  A ) xe B )  ->  E. z  e.  ran  ( x  e.  ( ~P A  i^i  Fin )  |->  ( ( # `  x ) xe B ) ) y  <  z ) )
220219ralrimiva 2809 . . 3  |-  ( ( A  e.  V  /\  B  e.  ( 0 [,] +oo ) )  ->  A. y  e.  RR  ( y  <  (
( # `  A ) xe B )  ->  E. z  e.  ran  ( x  e.  ( ~P A  i^i  Fin )  |->  ( ( # `  x
) xe B ) ) y  < 
z ) )
221 supxr2 11624 . . 3  |-  ( ( ( ran  ( x  e.  ( ~P A  i^i  Fin )  |->  ( (
# `  x ) xe B ) )  C_  RR*  /\  (
( # `  A ) xe B )  e.  RR* )  /\  ( A. y  e.  ran  ( x  e.  ( ~P A  i^i  Fin )  |->  ( ( # `  x
) xe B ) ) y  <_ 
( ( # `  A
) xe B )  /\  A. y  e.  RR  ( y  < 
( ( # `  A
) xe B )  ->  E. z  e.  ran  ( x  e.  ( ~P A  i^i  Fin )  |->  ( ( # `  x ) xe B ) ) y  <  z ) ) )  ->  sup ( ran  ( x  e.  ( ~P A  i^i  Fin )  |->  ( ( # `  x ) xe B ) ) , 
RR* ,  <  )  =  ( ( # `  A
) xe B ) )
22247, 50, 81, 220, 221syl22anc 1293 . 2  |-  ( ( A  e.  V  /\  B  e.  ( 0 [,] +oo ) )  ->  sup ( ran  (
x  e.  ( ~P A  i^i  Fin )  |->  ( ( # `  x
) xe B ) ) ,  RR* ,  <  )  =  ( ( # `  A
) xe B ) )
22325, 222eqtrd 2505 1  |-  ( ( A  e.  V  /\  B  e.  ( 0 [,] +oo ) )  -> Σ* k  e.  A B  =  ( ( # `  A ) xe B ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    /\ wa 376    \/ w3o 1006    = wceq 1452   E.wex 1671    e. wcel 1904   F/_wnfc 2599   A.wral 2756   E.wrex 2757   _Vcvv 3031    u. cun 3388    i^i cin 3389    C_ wss 3390   (/)c0 3722   ~Pcpw 3942   {csn 3959   class class class wbr 4395    |-> cmpt 4454   ran crn 4840   -->wf 5585   ` cfv 5589  (class class class)co 6308    ~<_ cdom 7585   Fincfn 7587   supcsup 7972   RRcr 9556   0cc0 9557   1c1 9558    x. cmul 9562   +oocpnf 9690   RR*cxr 9692    < clt 9693    <_ cle 9694    / cdiv 10291   NNcn 10631   NN0cn0 10893   RR+crp 11325   xecxmu 11431   [,]cicc 11663   #chash 12553   ↾s cress 15200    gsumg cgsu 15417   RR*scxrs 15476   Mndcmnd 16613  .gcmg 16750  TopMndctmd 21163  Σ*cesum 28922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-inf2 8164  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634  ax-pre-sup 9635  ax-addf 9636  ax-mulf 9637
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-fal 1458  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-iin 4272  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-se 4799  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-isom 5598  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-of 6550  df-om 6712  df-1st 6812  df-2nd 6813  df-supp 6934  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-2o 7201  df-oadd 7204  df-er 7381  df-map 7492  df-pm 7493  df-ixp 7541  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-fsupp 7902  df-fi 7943  df-sup 7974  df-inf 7975  df-oi 8043  df-card 8391  df-cda 8616  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-div 10292  df-nn 10632  df-2 10690  df-3 10691  df-4 10692  df-5 10693  df-6 10694  df-7 10695  df-8 10696  df-9 10697  df-10 10698  df-n0 10894  df-z 10962  df-dec 11075  df-uz 11183  df-q 11288  df-rp 11326  df-xneg 11432  df-xadd 11433  df-xmul 11434  df-ioo 11664  df-ioc 11665  df-ico 11666  df-icc 11667  df-fz 11811  df-fzo 11943  df-fl 12061  df-mod 12130  df-seq 12252  df-exp 12311  df-fac 12498  df-bc 12526  df-hash 12554  df-shft 13207  df-cj 13239  df-re 13240  df-im 13241  df-sqrt 13375  df-abs 13376  df-limsup 13603  df-clim 13629  df-rlim 13630  df-sum 13830  df-ef 14198  df-sin 14200  df-cos 14201  df-pi 14203  df-struct 15201  df-ndx 15202  df-slot 15203  df-base 15204  df-sets 15205  df-ress 15206  df-plusg 15281  df-mulr 15282  df-starv 15283  df-sca 15284  df-vsca 15285  df-ip 15286  df-tset 15287  df-ple 15288  df-ds 15290  df-unif 15291  df-hom 15292  df-cco 15293  df-rest 15399  df-topn 15400  df-0g 15418  df-gsum 15419  df-topgen 15420  df-pt 15421  df-prds 15424  df-ordt 15477  df-xrs 15478  df-qtop 15484  df-imas 15485  df-xps 15488  df-mre 15570  df-mrc 15571  df-acs 15573  df-ps 16524  df-tsr 16525  df-plusf 16565  df-mgm 16566  df-sgrp 16605  df-mnd 16615  df-mhm 16660  df-submnd 16661  df-grp 16751  df-minusg 16752  df-sbg 16753  df-mulg 16754  df-subg 16892  df-cntz 17049  df-cmn 17510  df-abl 17511  df-mgp 17802  df-ur 17814  df-ring 17860  df-cring 17861  df-subrg 18084  df-abv 18123  df-lmod 18171  df-scaf 18172  df-sra 18473  df-rgmod 18474  df-psmet 19039  df-xmet 19040  df-met 19041  df-bl 19042  df-mopn 19043  df-fbas 19044  df-fg 19045  df-cnfld 19048  df-top 19998  df-bases 19999  df-topon 20000  df-topsp 20001  df-cld 20111  df-ntr 20112  df-cls 20113  df-nei 20191  df-lp 20229  df-perf 20230  df-cn 20320  df-cnp 20321  df-haus 20408  df-tx 20654  df-hmeo 20847  df-fil 20939  df-fm 21031  df-flim 21032  df-flf 21033  df-tmd 21165  df-tgp 21166  df-tsms 21219  df-trg 21252  df-xms 21413  df-ms 21414  df-tms 21415  df-nm 21675  df-ngp 21676  df-nrg 21678  df-nlm 21679  df-ii 21987  df-cncf 21988  df-limc 22900  df-dv 22901  df-log 23585  df-esum 28923
This theorem is referenced by:  esumpinfval  28968  esumpinfsum  28972
  Copyright terms: Public domain W3C validator