MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ertrd Unicode version

Theorem ertrd 6880
Description: A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014.)
Hypotheses
Ref Expression
ersymb.1  |-  ( ph  ->  R  Er  X )
ertrd.5  |-  ( ph  ->  A R B )
ertrd.6  |-  ( ph  ->  B R C )
Assertion
Ref Expression
ertrd  |-  ( ph  ->  A R C )

Proof of Theorem ertrd
StepHypRef Expression
1 ertrd.5 . 2  |-  ( ph  ->  A R B )
2 ertrd.6 . 2  |-  ( ph  ->  B R C )
3 ersymb.1 . . 3  |-  ( ph  ->  R  Er  X )
43ertr 6879 . 2  |-  ( ph  ->  ( ( A R B  /\  B R C )  ->  A R C ) )
51, 2, 4mp2and 661 1  |-  ( ph  ->  A R C )
Colors of variables: wff set class
Syntax hints:    -> wi 4   class class class wbr 4172    Er wer 6861
This theorem is referenced by:  ertr2d  6881  ertr3d  6882  ertr4d  6883  erinxp  6937  nqereq  8768  adderpq  8789  mulerpq  8790  efgred2  15340  efgcpbllemb  15342  efgcpbl2  15344  pcophtb  19007  pi1xfr  19033  pi1xfrcnvlem  19034
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pr 4363
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-op 3783  df-br 4173  df-opab 4227  df-xp 4843  df-rel 4844  df-co 4846  df-er 6864
  Copyright terms: Public domain W3C validator