Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ertr4d Structured version   Unicode version

Theorem ertr4d 7225
 Description: A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014.)
Hypotheses
Ref Expression
ersymb.1
ertr4d.5
ertr4d.6
Assertion
Ref Expression
ertr4d

Proof of Theorem ertr4d
StepHypRef Expression
1 ersymb.1 . 2
2 ertr4d.5 . 2
3 ertr4d.6 . . 3
41, 3ersym 7218 . 2
51, 2, 4ertrd 7222 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   class class class wbr 4395   wer 7203 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1954  ax-ext 2431  ax-sep 4516  ax-nul 4524  ax-pr 4634 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2265  df-mo 2266  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2602  df-ne 2647  df-ral 2801  df-rex 2802  df-rab 2805  df-v 3074  df-dif 3434  df-un 3436  df-in 3438  df-ss 3445  df-nul 3741  df-if 3895  df-sn 3981  df-pr 3983  df-op 3987  df-br 4396  df-opab 4454  df-xp 4949  df-rel 4950  df-cnv 4951  df-co 4952  df-er 7206 This theorem is referenced by:  erref  7226  erdisj  7253  nqereu  9204  nqereq  9210  efgredeu  16365  pi1xfr  20754  pi1xfrcnvlem  20755
 Copyright terms: Public domain W3C validator