MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ertr3d Structured version   Unicode version

Theorem ertr3d 7365
Description: A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014.)
Hypotheses
Ref Expression
ersymb.1  |-  ( ph  ->  R  Er  X )
ertr3d.5  |-  ( ph  ->  B R A )
ertr3d.6  |-  ( ph  ->  B R C )
Assertion
Ref Expression
ertr3d  |-  ( ph  ->  A R C )

Proof of Theorem ertr3d
StepHypRef Expression
1 ersymb.1 . 2  |-  ( ph  ->  R  Er  X )
2 ertr3d.5 . . 3  |-  ( ph  ->  B R A )
31, 2ersym 7359 . 2  |-  ( ph  ->  A R B )
4 ertr3d.6 . 2  |-  ( ph  ->  B R C )
51, 3, 4ertrd 7363 1  |-  ( ph  ->  A R C )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   class class class wbr 4394    Er wer 7344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4516  ax-nul 4524  ax-pr 4629
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2758  df-rex 2759  df-rab 2762  df-v 3060  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-nul 3738  df-if 3885  df-sn 3972  df-pr 3974  df-op 3978  df-br 4395  df-opab 4453  df-xp 4828  df-rel 4829  df-cnv 4830  df-co 4831  df-er 7347
This theorem is referenced by:  nqereq  9342  efgred2  17093  xmetresbl  21230  pcophtb  21819  pi1xfr  21845  pi1xfrcnvlem  21846  erbr3b  27891  prtlem10  31868
  Copyright terms: Public domain W3C validator