Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ertr3d Structured version   Visualization version   Unicode version

Theorem ertr3d 7381
 Description: A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014.)
Hypotheses
Ref Expression
ersymb.1
ertr3d.5
ertr3d.6
Assertion
Ref Expression
ertr3d

Proof of Theorem ertr3d
StepHypRef Expression
1 ersymb.1 . 2
2 ertr3d.5 . . 3
31, 2ersym 7375 . 2
4 ertr3d.6 . 2
51, 3, 4ertrd 7379 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   class class class wbr 4402   wer 7360 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-sep 4525  ax-nul 4534  ax-pr 4639 This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-ral 2742  df-rex 2743  df-rab 2746  df-v 3047  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-nul 3732  df-if 3882  df-sn 3969  df-pr 3971  df-op 3975  df-br 4403  df-opab 4462  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-er 7363 This theorem is referenced by:  nqereq  9360  efgred2  17403  xmetresbl  21452  pcophtb  22060  pi1xfr  22086  pi1xfrcnvlem  22087  erbr3b  28223  prtlem10  32437
 Copyright terms: Public domain W3C validator