MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ertr3d Unicode version

Theorem ertr3d 6882
Description: A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014.)
Hypotheses
Ref Expression
ersymb.1  |-  ( ph  ->  R  Er  X )
ertr3d.5  |-  ( ph  ->  B R A )
ertr3d.6  |-  ( ph  ->  B R C )
Assertion
Ref Expression
ertr3d  |-  ( ph  ->  A R C )

Proof of Theorem ertr3d
StepHypRef Expression
1 ersymb.1 . 2  |-  ( ph  ->  R  Er  X )
2 ertr3d.5 . . 3  |-  ( ph  ->  B R A )
31, 2ersym 6876 . 2  |-  ( ph  ->  A R B )
4 ertr3d.6 . 2  |-  ( ph  ->  B R C )
51, 3, 4ertrd 6880 1  |-  ( ph  ->  A R C )
Colors of variables: wff set class
Syntax hints:    -> wi 4   class class class wbr 4172    Er wer 6861
This theorem is referenced by:  nqereq  8768  efgred2  15340  xmetresbl  18420  pcophtb  19007  pi1xfr  19033  pi1xfrcnvlem  19034  prtlem10  26604
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pr 4363
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-op 3783  df-br 4173  df-opab 4227  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-er 6864
  Copyright terms: Public domain W3C validator