Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erngfset-rN Structured version   Visualization version   Unicode version

Theorem erngfset-rN 34419
Description: The division rings on trace-preserving endomorphisms for a lattice  K. (Contributed by NM, 8-Jun-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
erngset.h-r  |-  H  =  ( LHyp `  K
)
Assertion
Ref Expression
erngfset-rN  |-  ( K  e.  V  ->  ( EDRingR `  K )  =  ( w  e.  H  |->  { <. ( Base `  ndx ) ,  ( ( TEndo `  K
) `  w ) >. ,  <. ( +g  `  ndx ) ,  ( s  e.  ( ( TEndo `  K
) `  w ) ,  t  e.  (
( TEndo `  K ) `  w )  |->  ( f  e.  ( ( LTrn `  K ) `  w
)  |->  ( ( s `
 f )  o.  ( t `  f
) ) ) )
>. ,  <. ( .r
`  ndx ) ,  ( s  e.  ( (
TEndo `  K ) `  w ) ,  t  e.  ( ( TEndo `  K ) `  w
)  |->  ( t  o.  s ) ) >. } ) )
Distinct variable groups:    w, H    f, s, t, w, K
Allowed substitution hints:    H( t, f, s)    V( w, t, f, s)

Proof of Theorem erngfset-rN
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 elex 3066 . 2  |-  ( K  e.  V  ->  K  e.  _V )
2 fveq2 5888 . . . . 5  |-  ( k  =  K  ->  ( LHyp `  k )  =  ( LHyp `  K
) )
3 erngset.h-r . . . . 5  |-  H  =  ( LHyp `  K
)
42, 3syl6eqr 2514 . . . 4  |-  ( k  =  K  ->  ( LHyp `  k )  =  H )
5 fveq2 5888 . . . . . . 7  |-  ( k  =  K  ->  ( TEndo `  k )  =  ( TEndo `  K )
)
65fveq1d 5890 . . . . . 6  |-  ( k  =  K  ->  (
( TEndo `  k ) `  w )  =  ( ( TEndo `  K ) `  w ) )
76opeq2d 4187 . . . . 5  |-  ( k  =  K  ->  <. ( Base `  ndx ) ,  ( ( TEndo `  k
) `  w ) >.  =  <. ( Base `  ndx ) ,  ( ( TEndo `  K ) `  w ) >. )
8 fveq2 5888 . . . . . . . . 9  |-  ( k  =  K  ->  ( LTrn `  k )  =  ( LTrn `  K
) )
98fveq1d 5890 . . . . . . . 8  |-  ( k  =  K  ->  (
( LTrn `  k ) `  w )  =  ( ( LTrn `  K
) `  w )
)
109mpteq1d 4498 . . . . . . 7  |-  ( k  =  K  ->  (
f  e.  ( (
LTrn `  k ) `  w )  |->  ( ( s `  f )  o.  ( t `  f ) ) )  =  ( f  e.  ( ( LTrn `  K
) `  w )  |->  ( ( s `  f )  o.  (
t `  f )
) ) )
116, 6, 10mpt2eq123dv 6380 . . . . . 6  |-  ( k  =  K  ->  (
s  e.  ( (
TEndo `  k ) `  w ) ,  t  e.  ( ( TEndo `  k ) `  w
)  |->  ( f  e.  ( ( LTrn `  k
) `  w )  |->  ( ( s `  f )  o.  (
t `  f )
) ) )  =  ( s  e.  ( ( TEndo `  K ) `  w ) ,  t  e.  ( ( TEndo `  K ) `  w
)  |->  ( f  e.  ( ( LTrn `  K
) `  w )  |->  ( ( s `  f )  o.  (
t `  f )
) ) ) )
1211opeq2d 4187 . . . . 5  |-  ( k  =  K  ->  <. ( +g  `  ndx ) ,  ( s  e.  ( ( TEndo `  k ) `  w ) ,  t  e.  ( ( TEndo `  k ) `  w
)  |->  ( f  e.  ( ( LTrn `  k
) `  w )  |->  ( ( s `  f )  o.  (
t `  f )
) ) ) >.  =  <. ( +g  `  ndx ) ,  ( s  e.  ( ( TEndo `  K
) `  w ) ,  t  e.  (
( TEndo `  K ) `  w )  |->  ( f  e.  ( ( LTrn `  K ) `  w
)  |->  ( ( s `
 f )  o.  ( t `  f
) ) ) )
>. )
13 eqidd 2463 . . . . . . 7  |-  ( k  =  K  ->  (
t  o.  s )  =  ( t  o.  s ) )
146, 6, 13mpt2eq123dv 6380 . . . . . 6  |-  ( k  =  K  ->  (
s  e.  ( (
TEndo `  k ) `  w ) ,  t  e.  ( ( TEndo `  k ) `  w
)  |->  ( t  o.  s ) )  =  ( s  e.  ( ( TEndo `  K ) `  w ) ,  t  e.  ( ( TEndo `  K ) `  w
)  |->  ( t  o.  s ) ) )
1514opeq2d 4187 . . . . 5  |-  ( k  =  K  ->  <. ( .r `  ndx ) ,  ( s  e.  ( ( TEndo `  k ) `  w ) ,  t  e.  ( ( TEndo `  k ) `  w
)  |->  ( t  o.  s ) ) >.  =  <. ( .r `  ndx ) ,  ( s  e.  ( ( TEndo `  K ) `  w
) ,  t  e.  ( ( TEndo `  K
) `  w )  |->  ( t  o.  s
) ) >. )
167, 12, 15tpeq123d 4079 . . . 4  |-  ( k  =  K  ->  { <. (
Base `  ndx ) ,  ( ( TEndo `  k
) `  w ) >. ,  <. ( +g  `  ndx ) ,  ( s  e.  ( ( TEndo `  k
) `  w ) ,  t  e.  (
( TEndo `  k ) `  w )  |->  ( f  e.  ( ( LTrn `  k ) `  w
)  |->  ( ( s `
 f )  o.  ( t `  f
) ) ) )
>. ,  <. ( .r
`  ndx ) ,  ( s  e.  ( (
TEndo `  k ) `  w ) ,  t  e.  ( ( TEndo `  k ) `  w
)  |->  ( t  o.  s ) ) >. }  =  { <. ( Base `  ndx ) ,  ( ( TEndo `  K
) `  w ) >. ,  <. ( +g  `  ndx ) ,  ( s  e.  ( ( TEndo `  K
) `  w ) ,  t  e.  (
( TEndo `  K ) `  w )  |->  ( f  e.  ( ( LTrn `  K ) `  w
)  |->  ( ( s `
 f )  o.  ( t `  f
) ) ) )
>. ,  <. ( .r
`  ndx ) ,  ( s  e.  ( (
TEndo `  K ) `  w ) ,  t  e.  ( ( TEndo `  K ) `  w
)  |->  ( t  o.  s ) ) >. } )
174, 16mpteq12dv 4495 . . 3  |-  ( k  =  K  ->  (
w  e.  ( LHyp `  k )  |->  { <. (
Base `  ndx ) ,  ( ( TEndo `  k
) `  w ) >. ,  <. ( +g  `  ndx ) ,  ( s  e.  ( ( TEndo `  k
) `  w ) ,  t  e.  (
( TEndo `  k ) `  w )  |->  ( f  e.  ( ( LTrn `  k ) `  w
)  |->  ( ( s `
 f )  o.  ( t `  f
) ) ) )
>. ,  <. ( .r
`  ndx ) ,  ( s  e.  ( (
TEndo `  k ) `  w ) ,  t  e.  ( ( TEndo `  k ) `  w
)  |->  ( t  o.  s ) ) >. } )  =  ( w  e.  H  |->  {
<. ( Base `  ndx ) ,  ( ( TEndo `  K ) `  w ) >. ,  <. ( +g  `  ndx ) ,  ( s  e.  ( ( TEndo `  K
) `  w ) ,  t  e.  (
( TEndo `  K ) `  w )  |->  ( f  e.  ( ( LTrn `  K ) `  w
)  |->  ( ( s `
 f )  o.  ( t `  f
) ) ) )
>. ,  <. ( .r
`  ndx ) ,  ( s  e.  ( (
TEndo `  K ) `  w ) ,  t  e.  ( ( TEndo `  K ) `  w
)  |->  ( t  o.  s ) ) >. } ) )
18 df-edring-rN 34368 . . 3  |-  EDRingR  =  ( k  e.  _V  |->  ( w  e.  ( LHyp `  k )  |->  {
<. ( Base `  ndx ) ,  ( ( TEndo `  k ) `  w ) >. ,  <. ( +g  `  ndx ) ,  ( s  e.  ( ( TEndo `  k
) `  w ) ,  t  e.  (
( TEndo `  k ) `  w )  |->  ( f  e.  ( ( LTrn `  k ) `  w
)  |->  ( ( s `
 f )  o.  ( t `  f
) ) ) )
>. ,  <. ( .r
`  ndx ) ,  ( s  e.  ( (
TEndo `  k ) `  w ) ,  t  e.  ( ( TEndo `  k ) `  w
)  |->  ( t  o.  s ) ) >. } ) )
19 fvex 5898 . . . . 5  |-  ( LHyp `  K )  e.  _V
203, 19eqeltri 2536 . . . 4  |-  H  e. 
_V
2120mptex 6161 . . 3  |-  ( w  e.  H  |->  { <. (
Base `  ndx ) ,  ( ( TEndo `  K
) `  w ) >. ,  <. ( +g  `  ndx ) ,  ( s  e.  ( ( TEndo `  K
) `  w ) ,  t  e.  (
( TEndo `  K ) `  w )  |->  ( f  e.  ( ( LTrn `  K ) `  w
)  |->  ( ( s `
 f )  o.  ( t `  f
) ) ) )
>. ,  <. ( .r
`  ndx ) ,  ( s  e.  ( (
TEndo `  K ) `  w ) ,  t  e.  ( ( TEndo `  K ) `  w
)  |->  ( t  o.  s ) ) >. } )  e.  _V
2217, 18, 21fvmpt 5971 . 2  |-  ( K  e.  _V  ->  ( EDRingR `  K )  =  ( w  e.  H  |->  { <. ( Base `  ndx ) ,  ( ( TEndo `  K
) `  w ) >. ,  <. ( +g  `  ndx ) ,  ( s  e.  ( ( TEndo `  K
) `  w ) ,  t  e.  (
( TEndo `  K ) `  w )  |->  ( f  e.  ( ( LTrn `  K ) `  w
)  |->  ( ( s `
 f )  o.  ( t `  f
) ) ) )
>. ,  <. ( .r
`  ndx ) ,  ( s  e.  ( (
TEndo `  K ) `  w ) ,  t  e.  ( ( TEndo `  K ) `  w
)  |->  ( t  o.  s ) ) >. } ) )
231, 22syl 17 1  |-  ( K  e.  V  ->  ( EDRingR `  K )  =  ( w  e.  H  |->  { <. ( Base `  ndx ) ,  ( ( TEndo `  K
) `  w ) >. ,  <. ( +g  `  ndx ) ,  ( s  e.  ( ( TEndo `  K
) `  w ) ,  t  e.  (
( TEndo `  K ) `  w )  |->  ( f  e.  ( ( LTrn `  K ) `  w
)  |->  ( ( s `
 f )  o.  ( t `  f
) ) ) )
>. ,  <. ( .r
`  ndx ) ,  ( s  e.  ( (
TEndo `  K ) `  w ) ,  t  e.  ( ( TEndo `  K ) `  w
)  |->  ( t  o.  s ) ) >. } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1455    e. wcel 1898   _Vcvv 3057   {ctp 3984   <.cop 3986    |-> cmpt 4475    o. ccom 4857   ` cfv 5601    |-> cmpt2 6317   ndxcnx 15167   Basecbs 15170   +g cplusg 15239   .rcmulr 15240   LHypclh 33594   LTrncltrn 33711   TEndoctendo 34364   EDRingRcedring-rN 34366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1680  ax-4 1693  ax-5 1769  ax-6 1816  ax-7 1862  ax-9 1907  ax-10 1926  ax-11 1931  ax-12 1944  ax-13 2102  ax-ext 2442  ax-rep 4529  ax-sep 4539  ax-nul 4548  ax-pr 4653
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3an 993  df-tru 1458  df-ex 1675  df-nf 1679  df-sb 1809  df-eu 2314  df-mo 2315  df-clab 2449  df-cleq 2455  df-clel 2458  df-nfc 2592  df-ne 2635  df-ral 2754  df-rex 2755  df-reu 2756  df-rab 2758  df-v 3059  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-nul 3744  df-if 3894  df-sn 3981  df-pr 3983  df-tp 3985  df-op 3987  df-uni 4213  df-iun 4294  df-br 4417  df-opab 4476  df-mpt 4477  df-id 4768  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-oprab 6319  df-mpt2 6320  df-edring-rN 34368
This theorem is referenced by:  erngset-rN  34420
  Copyright terms: Public domain W3C validator