Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erngfplus Structured version   Unicode version

Theorem erngfplus 33834
Description: Ring addition operation. (Contributed by NM, 9-Jun-2013.)
Hypotheses
Ref Expression
erngset.h  |-  H  =  ( LHyp `  K
)
erngset.t  |-  T  =  ( ( LTrn `  K
) `  W )
erngset.e  |-  E  =  ( ( TEndo `  K
) `  W )
erngset.d  |-  D  =  ( ( EDRing `  K
) `  W )
erng.p  |-  .+  =  ( +g  `  D )
Assertion
Ref Expression
erngfplus  |-  ( ( K  e.  V  /\  W  e.  H )  ->  .+  =  ( s  e.  E ,  t  e.  E  |->  ( f  e.  T  |->  ( ( s `  f )  o.  ( t `  f ) ) ) ) )
Distinct variable groups:    f, s,
t, K    f, W, s, t    E, s, t
Allowed substitution hints:    D( t, f, s)    .+ ( t, f, s)    T( t, f, s)    E( f)    H( t, f, s)    V( t, f, s)

Proof of Theorem erngfplus
StepHypRef Expression
1 erngset.h . . . 4  |-  H  =  ( LHyp `  K
)
2 erngset.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
3 erngset.e . . . 4  |-  E  =  ( ( TEndo `  K
) `  W )
4 erngset.d . . . 4  |-  D  =  ( ( EDRing `  K
) `  W )
51, 2, 3, 4erngset 33832 . . 3  |-  ( ( K  e.  V  /\  W  e.  H )  ->  D  =  { <. (
Base `  ndx ) ,  E >. ,  <. ( +g  `  ndx ) ,  ( s  e.  E ,  t  e.  E  |->  ( f  e.  T  |->  ( ( s `  f )  o.  (
t `  f )
) ) ) >. ,  <. ( .r `  ndx ) ,  ( s  e.  E ,  t  e.  E  |->  ( s  o.  t ) )
>. } )
65fveq2d 5855 . 2  |-  ( ( K  e.  V  /\  W  e.  H )  ->  ( +g  `  D
)  =  ( +g  `  { <. ( Base `  ndx ) ,  E >. , 
<. ( +g  `  ndx ) ,  ( s  e.  E ,  t  e.  E  |->  ( f  e.  T  |->  ( ( s `
 f )  o.  ( t `  f
) ) ) )
>. ,  <. ( .r
`  ndx ) ,  ( s  e.  E , 
t  e.  E  |->  ( s  o.  t ) ) >. } ) )
7 erng.p . 2  |-  .+  =  ( +g  `  D )
8 fvex 5861 . . . . 5  |-  ( (
TEndo `  K ) `  W )  e.  _V
93, 8eqeltri 2488 . . . 4  |-  E  e. 
_V
109, 9mpt2ex 6863 . . 3  |-  ( s  e.  E ,  t  e.  E  |->  ( f  e.  T  |->  ( ( s `  f )  o.  ( t `  f ) ) ) )  e.  _V
11 eqid 2404 . . . 4  |-  { <. (
Base `  ndx ) ,  E >. ,  <. ( +g  `  ndx ) ,  ( s  e.  E ,  t  e.  E  |->  ( f  e.  T  |->  ( ( s `  f )  o.  (
t `  f )
) ) ) >. ,  <. ( .r `  ndx ) ,  ( s  e.  E ,  t  e.  E  |->  ( s  o.  t ) )
>. }  =  { <. (
Base `  ndx ) ,  E >. ,  <. ( +g  `  ndx ) ,  ( s  e.  E ,  t  e.  E  |->  ( f  e.  T  |->  ( ( s `  f )  o.  (
t `  f )
) ) ) >. ,  <. ( .r `  ndx ) ,  ( s  e.  E ,  t  e.  E  |->  ( s  o.  t ) )
>. }
1211rngplusg 14964 . . 3  |-  ( ( s  e.  E , 
t  e.  E  |->  ( f  e.  T  |->  ( ( s `  f
)  o.  ( t `
 f ) ) ) )  e.  _V  ->  ( s  e.  E ,  t  e.  E  |->  ( f  e.  T  |->  ( ( s `  f )  o.  (
t `  f )
) ) )  =  ( +g  `  { <. ( Base `  ndx ) ,  E >. , 
<. ( +g  `  ndx ) ,  ( s  e.  E ,  t  e.  E  |->  ( f  e.  T  |->  ( ( s `
 f )  o.  ( t `  f
) ) ) )
>. ,  <. ( .r
`  ndx ) ,  ( s  e.  E , 
t  e.  E  |->  ( s  o.  t ) ) >. } ) )
1310, 12ax-mp 5 . 2  |-  ( s  e.  E ,  t  e.  E  |->  ( f  e.  T  |->  ( ( s `  f )  o.  ( t `  f ) ) ) )  =  ( +g  `  { <. ( Base `  ndx ) ,  E >. , 
<. ( +g  `  ndx ) ,  ( s  e.  E ,  t  e.  E  |->  ( f  e.  T  |->  ( ( s `
 f )  o.  ( t `  f
) ) ) )
>. ,  <. ( .r
`  ndx ) ,  ( s  e.  E , 
t  e.  E  |->  ( s  o.  t ) ) >. } )
146, 7, 133eqtr4g 2470 1  |-  ( ( K  e.  V  /\  W  e.  H )  ->  .+  =  ( s  e.  E ,  t  e.  E  |->  ( f  e.  T  |->  ( ( s `  f )  o.  ( t `  f ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1407    e. wcel 1844   _Vcvv 3061   {ctp 3978   <.cop 3980    |-> cmpt 4455    o. ccom 4829   ` cfv 5571    |-> cmpt2 6282   ndxcnx 14840   Basecbs 14843   +g cplusg 14911   .rcmulr 14912   LHypclh 33014   LTrncltrn 33131   TEndoctendo 33784   EDRingcedring 33785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1641  ax-4 1654  ax-5 1727  ax-6 1773  ax-7 1816  ax-8 1846  ax-9 1848  ax-10 1863  ax-11 1868  ax-12 1880  ax-13 2028  ax-ext 2382  ax-rep 4509  ax-sep 4519  ax-nul 4527  ax-pow 4574  ax-pr 4632  ax-un 6576  ax-cnex 9580  ax-resscn 9581  ax-1cn 9582  ax-icn 9583  ax-addcl 9584  ax-addrcl 9585  ax-mulcl 9586  ax-mulrcl 9587  ax-mulcom 9588  ax-addass 9589  ax-mulass 9590  ax-distr 9591  ax-i2m1 9592  ax-1ne0 9593  ax-1rid 9594  ax-rnegex 9595  ax-rrecex 9596  ax-cnre 9597  ax-pre-lttri 9598  ax-pre-lttrn 9599  ax-pre-ltadd 9600  ax-pre-mulgt0 9601
This theorem depends on definitions:  df-bi 187  df-or 370  df-an 371  df-3or 977  df-3an 978  df-tru 1410  df-ex 1636  df-nf 1640  df-sb 1766  df-eu 2244  df-mo 2245  df-clab 2390  df-cleq 2396  df-clel 2399  df-nfc 2554  df-ne 2602  df-nel 2603  df-ral 2761  df-rex 2762  df-reu 2763  df-rab 2765  df-v 3063  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-pss 3432  df-nul 3741  df-if 3888  df-pw 3959  df-sn 3975  df-pr 3977  df-tp 3979  df-op 3981  df-uni 4194  df-int 4230  df-iun 4275  df-br 4398  df-opab 4456  df-mpt 4457  df-tr 4492  df-eprel 4736  df-id 4740  df-po 4746  df-so 4747  df-fr 4784  df-we 4786  df-xp 4831  df-rel 4832  df-cnv 4833  df-co 4834  df-dm 4835  df-rn 4836  df-res 4837  df-ima 4838  df-pred 5369  df-ord 5415  df-on 5416  df-lim 5417  df-suc 5418  df-iota 5535  df-fun 5573  df-fn 5574  df-f 5575  df-f1 5576  df-fo 5577  df-f1o 5578  df-fv 5579  df-riota 6242  df-ov 6283  df-oprab 6284  df-mpt2 6285  df-om 6686  df-1st 6786  df-2nd 6787  df-wrecs 7015  df-recs 7077  df-rdg 7115  df-1o 7169  df-oadd 7173  df-er 7350  df-en 7557  df-dom 7558  df-sdom 7559  df-fin 7560  df-pnf 9662  df-mnf 9663  df-xr 9664  df-ltxr 9665  df-le 9666  df-sub 9845  df-neg 9846  df-nn 10579  df-2 10637  df-3 10638  df-n0 10839  df-z 10908  df-uz 11130  df-fz 11729  df-struct 14845  df-ndx 14846  df-slot 14847  df-base 14848  df-plusg 14924  df-mulr 14925  df-edring 33789
This theorem is referenced by:  erngplus  33835  erngdvlem1  34020  erngdvlem2N  34021  erngdvlem3  34022  erngdvlem4  34023  erng0g  34026  dvafplusg  34040  dvhfplusr  34117
  Copyright terms: Public domain W3C validator